Прецизійна візуалізація судин сітківки in vivo за допомогою адаптивної оптики
DOI:
https://doi.org/10.31288/oftalmolzh202323138Ключові слова:
адаптивна оптика, судини сітківки, артеріальна гіпертензія, діабетична ретинопатіяАнотація
Використання адаптивної оптики (АО) забезпечує нові унікальні можливості прижиттєвої візуалізації судин сітківки. Детальні зображення судин сітківки, отримані за допомогою АО, можуть успішно застосовуватися як один із компонентів мультимодальної візуалізації різної патології сітківки, доповнюючи дані класичних методів діагностики. Перспективна неінвазивна візуалізація структур очного дна за допомогою АО дозволяє якісно та кількісно оцінити ранні ознаки ремоделювання судин сітківки, пов’язані з віком, артеріальною гіпертензією, цукровим діабетом та іншими захворюваннями.
Посилання
Nardin M, Coschignano MA, Rossini C, De Ciuceis C, Caletti S, Rizzoni M, et al. Methods of evaluation of microvascular structure: state of the art. Eur J Transl Clin Med. 2018;1(1):7-17. https://doi.org/10.31373/ejtcm/95161
Angel J. Ground-based imaging of extrasolar planets using adaptive optics. Nature. 1994; 368:203-207. https://doi.org/10.1038/368203a0
Hardy JW. Adaptive Optics for Astronomical Telescopes. Oxford University Press; 1998; 448 p.
Rodríguez C, Ji N. Adaptive optical microscopy for neurobiology. Curr Opin Neurobiol. 2018; 50:83-91. https://doi.org/10.1016/j.conb.2018.01.011
Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat Commun. 2015; 6:7276. https://doi.org/10.1038/ncomms8276. https://doi.org/10.1038/ncomms8276
Akyol E, Hagag AM, Sivaprasad S, Lotery AJ. Adaptive optics: principles and applications in ophthalmology. Eye. 2021; 35(1):244-264. https://doi.org/10.1038/s41433-020-01286-z
Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997; 14(11):2884-92. https://doi.org/10.1364/josaa.14.002884.
Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM, Williams DR, Carroll J. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express. 2011; 2(7):1864-76. https://doi.org/10.1364/BOE.2.001864.
Pallikaris A, Williams DR, Hofer H. The reflectance of single cones in the living human eye. Invest Ophthalmol Vis Sci. 2003; 44:4580-4592. https://doi.org/10.1167/iovs.03-0094.
https://doi.org/10.1167/iovs.03-0094
Rossi EA, Granger CE, Sharma R, Yang Q, Saito K, Schwarz C, et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc Natl Acad Sci U S A. 2017; 114(3):586-591. https://doi.org/10.1073/pnas.1613445114
Scoles D, Sulai YN, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed Opt Express. 2013; 4(9):1710-1723. https://doi.org/10.1364/BOE.4.001710.
Laforest T, Künzi M, Kowalczuk L, Carpentras D, Behar-Cohen F, Moser C. Transscleral Optical Phase Imaging of the Human Retina. Nat Photonics. 2020; 14(7):439-445. https://doi.org/10.1038/s41566-020-0608-y. https://doi.org/10.1038/s41566-020-0608-y
Rizzoni D, Docchio F. Assessment of retinal arteriolar morphology by noninvasive methods: the philosopher's stone? J Hypertens. 2016; 34(6):1044-6.
https://doi.org/10.1097/HJH.0000000000000908
Zacharria M, Lamory B, Chateau N. New view of the eye. Nature Photon. 2011; 5:24-26. https://doi.org/10.1038/nphoton.2010.298.
Bakker E, Dikland FA, van Bakel R, Andrade De Jesus D, Sánchez Brea L, et al. Adaptive optics ophthalmoscopy: a systematic review of vascular biomarkers. Surv Ophthalmol. 2022; 67(2):369-387. https://doi.org/10.1016/j.survophthal.2021.05.012.
https://doi.org/10.1016/j.survophthal.2021.05.012
Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, Carroll J, Dubra A. In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci. 2014; 55(7):4244-4251. https://doi.org/10.1167/iovs.14-14542.
https://doi.org/10.1167/iovs.14-14542
Zhang B, Li N, Kang J, He Y, Chen XM. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update. Int J Ophthalmol. 2017; 10(11):1751-1758. https://doi.org/10.18240/ijo.2017.11.18.
https://doi.org/10.18240/ijo.2017.11.18
Carroll J, Kay DB, Scoles D, Dubra A, Lombardo M. Adaptive optics retinal imaging - clinical opportunities and challenges. Curr Eye Res. 2013; 38(7):709-21. https://doi.org/10.3109/02713683.2013.784792.
https://doi.org/10.3109/02713683.2013.784792
Jonnal RS, Kocaoglu OP, Zawadzki RJ, Liu Z, Miller DT, Werner JS. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future. Invest Ophthalmol Vis Sci. 2016; 57(9):51-68. https://doi.org/10.1167/iovs.16-19103.
https://doi.org/10.1167/iovs.16-19103
Chui TY, Gast TJ, Burns SA. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2013; 54(10):7115-24. https://doi.org/10.1167/iovs.13-13027.
https://doi.org/10.1167/iovs.13-13027
Ikram MK, Cheung CY, Lorenzi M, Klein R, Jones TL, Wong TY; NIH/JDRF Workshop on Retinal Biomarker for Diabetes Group. Retinal vascular caliber as a biomarker for diabetes microvascular complications. Diabetes Care. 2013; 36(3):750-9. https://doi.org/10.2337/dc12-1554.
https://doi.org/10.2337/dc12-1554
Rosenbaum D, Alessandro M, Koch E, Rossant F, Gallo A, Kachenoura N, et al. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J Hypertens. 2016; 34:1115-1122. https://doi.org/10.1097/HJH.0000000000000894.
https://doi.org/10.1097/HJH.0000000000000894
Hillard JG, Gast TJ, Chui TY, Sapir D, Burns SA. Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics. Transl Vis Sci Technol. 2016; 5(4):16. https://doi.org/10.1167/tvst.5.4.16.
https://doi.org/10.1167/tvst.5.4.16
Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, et al. Prognostic significance of small-artery structure in hypertension. Circulation. 2003; 108(18):2230-5. https://doi.org/10.1161/01.CIR.0000095031.51492.C5.
https://doi.org/10.1161/01.CIR.0000095031.51492.C5
Meixner E, Michelson G. Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research. Graefes Arch Clin Exp Ophthalmol. 2015; 253(11):1985-95. https://doi.org/10.1007/s00417-015-3115-y.
https://doi.org/10.1007/s00417-015-3115-y
Koch E, Rosenbaum D, Brolly A, Sahel JA, Chaumet-Riffaud P, Girerd X, et al. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens. 2014; 32(4):890-898. https://doi.org/10.1097/HJH.0000000000000095.
https://doi.org/10.1097/HJH.0000000000000095
Arichika S, Uji A, Ooto S, Muraoka Y, Yoshimura N. Effects of age and blood pressure on the retinal arterial wall, analyzed using adaptive optics scanning laser ophthalmoscopy. Sci Rep. 2015; 5:12283. https://doi.org/10.1038/srep12283.
https://doi.org/10.1038/srep12283
Baleanu D, Ritt M, Harazny J, Heckmann J, Schmieder RE, Michelson G. Wall-to-lumen ratio of retinal arterioles and arteriole-to-venule ratio of retinal vessels in patients with cerebrovascular damage. Invest Ophthalmol Vis Sci. 2009; 50(9):4351-9. https://doi.org/10.1167/iovs.08-3266.
https://doi.org/10.1167/iovs.08-3266
Rizzoni D, Porteri E, Duse S, De Ciuceis C, Rosei CA, La Boria E, et al. Relationship between media-to-lumen ratio of subcutaneous small arteries and wall-to-lumen ratio of retinal arterioles evaluated noninvasively by scanning laser Doppler flowmetry. J Hypertens. 2012; 30(6):1169-75. https://doi.org/ 10.1097/HJH.0b013e328352f81d.
https://doi.org/10.1097/HJH.0b013e328352f81d
Salvetti M, Agabiti Rosei C, Paini A, Aggiusti C, Cancarini A, Duse S, et al. Relationship of wall-to-lumen ratio of retinal arterioles with clinic and 24-hour blood pressure. Hypertension. 2014; 63(5):1110-5. https://doi.org/10.1161/HYPERTENSIONAHA.113.03004.
https://doi.org/10.1161/HYPERTENSIONAHA.113.03004
Zaleska-Żmijewska A, Piątkiewicz P, Śmigielska B, Sokołowska-Oracz A, Wawrzyniak ZM, Romaniuk D, et al. Retinal Photoreceptors and Microvascular Changes in Prediabetes Measured with Adaptive Optics (rtx1™): A Case-Control Study. J Diabetes Res. 2017; 2017:4174292. https://doi.org/10.1155/2017/4174292.
https://doi.org/10.1155/2017/4174292
Arichika S, Uji A, Murakami T, Suzuma K, Gotoh N, Yoshimura N. Correlation of retinal arterial wall thickness with atherosclerosis predictors in type 2 diabetes without clinical retinopathy. Br J Ophthalmol. 2017; 101(1):69-74. https://doi.org/ 10.1136/bjophthalmol-2016-309612.
https://doi.org/10.1136/bjophthalmol-2016-309612
Zaleska-Żmijewska A, Wawrzyniak ZM, Dąbrowska A, Szaflik JP. Adaptive Optics (rtx1) High-Resolution Imaging of Photoreceptors and Retinal Arteries in Patients with Diabetic Retinopathy. J Diabetes Res. 2019; 2019:9548324. https://doi.org/ 10.1155/2019/9548324.
https://doi.org/10.1155/2019/9548324
Cristescu IE, Zagrean L, Balta F, Branisteanu DC. Retinal microcirculation investigation in type I and II diabetic patients without retinopathy using an adaptive optics retinal camera. Acta Endocrinol (Buchar). 2019; 15(4):417-422. https://doi.org/10.4183/aeb.2019.417.
https://doi.org/10.4183/aeb.2019.417
Streese L, Brawand LY, Gugleta K, Maloca PM, Vilser W, Hanssen H. New frontiers in noninvasive analysis of retinal wall-to-lumen ratio by retinal vessel wall analysis. Trans Vis Sci Tech. 2020; 9(6):7, https://doi.org/10.1167/tvst.9.6.7.
https://doi.org/10.1167/tvst.9.6.7
Ueno Y, Iwase T, Goto K, Tomita R, Ra E, Yamamoto K, Terasaki H. Association of changes of retinal vessels diameter with ocular blood flow in eyes with diabetic retinopathy. Sci Rep. 2021; 11(1):4653. https://doi.org/10.1038/s41598-021-84067-2.
https://doi.org/10.1038/s41598-021-84067-2
Sadowski J, Targonski R, Cyganski P, Nowek P, Starek-Stelmaszczyk M, Zajac K, et al. Remodeling of Retinal Arterioles and Carotid Arteries in Heart Failure Development - A Preliminary Study. J. Clin. Med. 2022; 11:3721. https://doi.org/10.3390/jcm11133721.
https://doi.org/10.3390/jcm11133721
Baltă F, Cristescu IE, Mirescu AE, Baltă G, Zemba M, Tofolean IT. Investigation of Retinal Microcirculation in Diabetic Patients Using Adaptive Optics Ophthalmoscopy and Optical Coherence Angiography. J Diabetes Res. 2022; 2022:1516668. https://doi.org/10.1155/2022/1516668.
https://doi.org/10.1155/2022/1516668
Martin JA, Roorda A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology. 2005; 112(12):2219-24. https://doi.org/ 10.1016/j.ophtha.2005.06.033.
https://doi.org/10.1016/j.ophtha.2005.06.033
Martin JA, Roorda A. Pulsatility of parafoveal capillary leukocytes. Exp Eye Res. 2009; 88(3):356-60. https://doi.org/10.1016/j.exer.2008.07.008.
https://doi.org/10.1016/j.exer.2008.07.008
Antonios TF. Microvascular rarefaction in hypertension--reversal or over-correction by treatment? Am J Hypertens. 2006; 19(5):484-5. https://doi.org/10.1016/j.amjhyper.2005.11.010.
https://doi.org/10.1016/j.amjhyper.2005.11.010
Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001; 104(6):735-40. https://doi.org/10.1161/hc3101.091158.
https://doi.org/10.1161/hc3101.091158
Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM. Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens. 2005; 23(2):247-50. https://doi.org/10.1097/00004872-200502000-00002.
https://doi.org/10.1097/00004872-200502000-00002
Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens. 2001; 19(5):921-30. https://doi.org/10.1097/00004872-200105000-00013.
https://doi.org/10.1097/00004872-200105000-00013
Harazny JM, Ritt M, Baleanu D, Ott C, Heckmann J, Schlaich MP, et al. Increased wall:lumen ratio of retinal arterioles in male patients with a history of a cerebrovascular event. Hypertension. 2007; 50(4):623-9. https://doi.org/10.1161/HYPERTENSIONAHA.107.090779.
https://doi.org/10.1161/HYPERTENSIONAHA.107.090779
Ritt M, Schmieder RE. Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension. 2009; 54(2):384-7. https://doi.org/10.1161/HYPERTENSIONAHA.109.133025.
https://doi.org/10.1161/HYPERTENSIONAHA.109.133025
Сhui TY, Dubow M, Pinhas A, Shah N, Gan A, Weitz R, et al. Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging. Biomed Opt Express. 2014; 5(4):1173-89. https://doi.org/10.1364/BOE.5.001173.
https://doi.org/10.1364/BOE.5.001173
Burns SA, Elsner AE, Chui TY, Vannasdale DA Jr, Clark CA, Gast TJ, et al. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express. 2014; 5(3):961-74. https://doi.org/10.1364/BOE.5.000961.
https://doi.org/10.1364/BOE.5.000961
Lombardo M, Parravano M, Serrao S, Ducoli P, Stirpe M, Lombardo G. Analysis of retinal capillaries in patients with type 1 diabetes and nonproliferative diabetic retinopathy using adaptive optics imaging. Retina. 2013; 33(8):1630-9. https://doi.org/10.1097/IAE.0b013e3182899326.
https://doi.org/10.1097/IAE.0b013e3182899326
Chen Y, Chen SDM, Chen FK. Branch retinal vein occlusion secondary to a retinal arteriolar macroaneurysm: a novel mechanism supported by multimodal imaging. Retin Cases Brief Rep. 2019; 13(1):10-14. https://doi.org/10.1097/ICB.0000000000000517.
https://doi.org/10.1097/ICB.0000000000000517
Paques M, Brolly A, Benesty J, Lermé N, Koch E, Rossant F, et al. Venous Nicking Without Arteriovenous Contact: The Role of the Arteriolar Microenvironment in Arteriovenous Nickings. JAMA Ophthalmol. 2015; 133(8):947-50. https://doi.org/10.1001/jamaophthalmol.2015.1132.
https://doi.org/10.1001/jamaophthalmol.2015.1132
Errera MH, Laguarrigue M, Rossant F, Koch E, Chaumette C, Fardeau C, et al. High-Resolution Imaging of Retinal Vasculitis by Flood Illumination Adaptive Optics Ophthalmoscopy: A Follow-up Study. Ocul Immunol Inflamm. 2020; 28(8):1171-1180. https://doi.org/10.1080/09273948.2019.1646773.
https://doi.org/10.1080/09273948.2019.1646773
Tan W, Yao X, Le TT, Tan B, Schmetterer L, Chua J. The New Era of Retinal Imaging in Hypertensive Patients. Asia Pac J Ophthalmol. 2022; 11(2):149-159. https://doi.org/10.1097/APO.0000000000000509.
https://doi.org/10.1097/APO.0000000000000509
Novais EA, Baumal CR, Sarraf D, Freund KB, Duker JS. Multimodal Imaging in Retinal Disease: A Consensus Definition. Ophthalmic Surg Lasers Imaging Retina. 2016; 47(3):201-5. doi: 10.3928/23258160-20160229-01.
https://doi.org/10.3928/23258160-20160229-01
Camino A, Zang P, Athwal A, Ni S, Jia Y, Huang D, Jian Y. Sensorless adaptive-optics optical coherence tomographic angiography. Biomed Opt Express. 2020; 11(7):3952-3967. doi: 10.1364/BOE.396829.
https://doi.org/10.1364/BOE.396829
Chui TYP, Mo S, Krawitz B, Menon NR, Choudhury N, Gan A, et al. Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int J Retina Vitreous. 2016; 2:11. doi: 10.1186/s40942-016-0037-8.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Олег Задорожний, Андрій Король, Наталія Пасєчнікова
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Ця робота ліцензується відповідно до ліцензії Creative Commons Attribution 4.0 International (CC BY). Ця ліцензія дозволяє повторно використовувати, поширювати, переробляти, адаптувати та будувати на основі матеріалу на будь-якому носії або в будь-якому форматі за умови обов'язкового посилання на авторів робіт і первинну публікацію у цьому журналі. Ліцензія дозволяє комерційне використання.
ПОЛОЖЕННЯ ПРО АВТОРСЬКІ ПРАВА
Автори, які подають матеріали до цього журналу, погоджуються з наступними положеннями:
- Автори отримують право на авторство своєї роботи одразу після її публікації та назавжди зберігають це право за собою без жодних обмежень.
- Дата початку дії авторського права на статтю відповідає даті публікації випуску, до якого вона включена.
ПОЛІТИКА ДЕПОНУВАННЯ
- Редакція журналу заохочує розміщення авторами рукопису статті в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах), оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності і динаміці цитування.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження статті у тому вигляді, в якому вона була опублікована цим журналом за умови збереження посилання на первинну публікацію у цьому журналі.
- Дозволяється самоархівування постпринтів (версій рукописів, схвалених до друку в процесі рецензування) під час їх редакційного опрацювання або опублікованих видавцем PDF-версій.
- Самоархівування препринтів (версій рукописів до рецензування) не дозволяється.