Assessing quantitatively the state of the blood-aqueous barrier by laser flare photometry: a review

Authors

  • Oleksandra Zborovska State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine”
  • Oleksandra Dorokhova State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine”
  • Andrii Korol State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine” https://orcid.org/0000-0003-0516-308X
  • Ksenia Troyanovska State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine”
  • Oleg Zadorozhnyy State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine” https://orcid.org/0000-0003-0125-2456
  • Viktoriia Kolesnichenko Filatov Institute of Eye Diseases and Tissue Therapy, NAMS of Ukraine
  • Nataliya Pasyechnikova State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine”

DOI:

https://doi.org/10.31288/oftalmolzh202346773

Keywords:

laser flare photometry, blood-aqueous barrier, blood–ocular barrier, uveitis

Abstract

This review discusses the experience in applying laser flare photometry, a non-invasive technique, in ophthalmology, to assess quantitatively the state of the blood-aqueous barrier (BAB) in patients with certain ocular and systemic disorders. The method allows reliable detection of such biomarkers of the state of the BAB as the intensity of the scattered light (flare) and number of cells in the aqueous of the anterior chamber, sometimes even at the subclinical level, which significantly improves the capability for early diagnosis and objective treatment monitoring.

References

Sawa M. Laser flare-cell photometer: principle and significance in clinical and basic ophthalmology. Jpn J Ophthalmol. 2017;61(1):21-42. https://doi.org/10.1007/s10384-016-0488-3

Harthan JS, Opitz DL, Fromstein SR, Morettin CE. Diagnosis and treatment of anterior uveitis: optometric management. Clin Optom (Auckl). 2016;8:23-35. https://doi.org/10.2147/OPTO.S72079

Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol. 2005;140:509-16. https://doi.org/10.1016/j.ajo.2005.03.057

Hogan MJ, Kimura SJ, Thygeson P. Signs and symptoms of uveitis. I. Anterior uveitis. Am J Ophthalmol. 1959;47:155-70. https://doi.org/10.1016/S0002-9394(14)78239-X

Sawa M, Tsurimaki Y, Tsuru T, Shimizu H. New quantitative method to determine protein concentration and cell number in aqueous in vivo. Jpn J Ophthalmol. 1988;32(2):132-42.

Oshika T, Araie M, Masuda K. Diurnal variation of aqueous flare in normal human eyes measured with laser flare-cell meter. Jpn J Ophthalmol. 1988;32:143-50.

Kesim C, Chehab Z, Hasanreisoglu M. Laser flare photometry in uveitis. Saudi J Ophthalmol. 2022;36(4):337-43. doi:10.4103/sjopt.sjopt_119_22.

Bernasconi O, Papadia M, Herbort CP. Sensitivity of laser flare photometry compared to slit-lamp cell evaluation in monitoring anterior chamber inflammation in uveitis. Int Ophthalmol. 2010;30(5):495-500. https://doi.org/10.1007/s10792-010-9386-8

Tugal-Tutkun I, Nilüfer Yalçındağ F, Herbort CP. Laser flare photometry and its use in uveitis. Exp Rev Ophthalmol. 2012;7:449-57. https://doi.org/10.1586/eop.12.47

Lam DL, Axtelle J, Rath S, Dyer A, Harrison B, Rogers C, et al. A Rayleigh Scatter-Based Ocular Flare Analysis Meter for Flare Photometry of the Anterior Chamber. Transl Vis Sci Technol. 2015;4(6):7. https://doi.org/10.1167/tvst.4.6.7

Invernizzi A, Marchi S, Aldigeri R, Mastrofilippo V, Viscogliosi F, Soldani A, et al. Objective Quantification of Anterior Chamber Inflammation: Measuring Cells and Flare by Anterior Segment Optical Coherence Tomography. Ophthalmology. 2017;124(11):1670-77. https://doi.org/10.1016/j.ophtha.2017.05.013

Oshika T, Kato S, Sawa M, Masuda K. Aqueous flare intensity and age. Jpn J Ophthalmol. 1989;33(2):237-42.

Onodera T, Gimbel HV, DeBroff BM. Aqueous flare and cell number in healthy eyes of Caucasians. Jpn J Ophthalmol. 1993;37(4):445-51.

Shah SM, Spalton DJ, Smith SE. Measurement of aqueous cells and flare in normal eyes. Br J Ophthalmol. 1991;75(6):348-52. https://doi.org/10.1136/bjo.75.6.348

Guillén-Monterrubío OM, Hartikainen J, Taskinen K, Saari KM. Quantitative determination of aqueous flare and cells in healthy eyes. Acta Ophthalmol Scand. 1997;75(1):58-62. https://doi.org/10.1111/j.1600-0420.1997.tb00251.x

Wakefield D, Herbort CP, Tugal-Tutkun I, Zierhut M. Controversies in ocular inflammation and immunology laser flare photometry. Ocul Immunol Inflamm. 2010;18:334-40. https://doi.org/10.3109/09273948.2010.512994

El-Harazi SM, Ruiz RS, Feldman RM, Chuang AZ, Villanueva G. Quantitative assessment of aqueous flare: the effect of age and pupillary dilation. Ophthalmic Surg Lasers. 2002:33(5):379-82. https://doi.org/10.3928/1542-8877-20020901-07

Hasanreisoglu M, Kesim C, Yalinbas D, Yilmaz M, Uzunay NS, Aktas Z, et al. Effect of light backscattering from anterior segment structures on automated flare meter measurements. Eur J Ophthalmol. 2022;32(4):2291-97. https://doi.org/10.1177/11206721211039350

Ursell PG, Spalton DJ, Tilling K. Relation between postoperative blood-aqueous barrier damage and LOCS III cataract gradings following routine phacoemulsification surgery. Br J Ophthalmol. 1997;81:544-7. https://doi.org/10.1136/bjo.81.7.544

Küchle M, Hannappel E, Nguyen NX, Ho ST, Beck W, Naumann GO. Correlation between tyndallometry with the «laser flare cell meter» in vivo and biochemical protein determination in human aqueous humor. Klin Monbl Augenheilkd. 1993;202(1):14-8. https://doi.org/10.1055/s-2008-1045553

Ladas JG, Wheeler NC, Morhun PJ, Rimmer SO, Holland GN. Laser flare-cell photometry: methodology and clinical applications. Surv Ophthalmol. 2005;50(1):27-47. https://doi.org/10.1016/j.survophthal.2004.10.004

Guex-Crosier Y, Pittet N, Herbort CP. Sensitivity of laser flare photometry to monitor inflammation in uveitis of the posterior segment. Ophthalmology. 1995;102(4):613-21. https://doi.org/10.1016/S0161-6420(95)30976-1

Herbort CP, Guex-Crosier Y, de Ancos E, Pittet N. Use of laser flare photometry to assess and monitor inflammation in uveitis. Ophthalmology. 1997;104(1):64-72. https://doi.org/10.1016/S0161-6420(97)30359-5

Yalcindag FN, Bingol Kiziltunc P, Savku E. Evaluation of intraocular inflammation with laser flare photometry in behçet uveitis. Ocul Immunol Inflamm. 2017;25:41-5. https://doi.org/10.3109/09273948.2015.1108444

Tugal-Tutkun I, Cingü K, Kir N, Yeniad B, Urgancioglu M, Gül A. Use of laser flare-cell photometry to quantify intraocular inflammation in patients with behçet uveitis. Graefes Arch Clin Exp Ophthalmol. 2008;246:1169-77. https://doi.org/10.1007/s00417-008-0823-6

Yang P, Fang W, Huang X, Zhou H, Wang L, Jiang B. Alterations of aqueous flare and cells detected by laser flare-cell photometry in patients with Behcet's disease. Int Ophthalmol. 2010;30(5):485-9. https://doi.org/10.1007/s10792-008-9229-z

Urzua CA, Herbort CP Jr, Takeuchi M, Schlaen A, Concha-Del-Rio LE, Usui Y, et al. Vogt-Koyanagi-Harada disease: the step-by-step approach to a better understanding of clinicopathology, immunopathology, diagnosis, and management: a brief review. J Ophthalmic Inflamm Infect. 2022;12(1):17. https://doi.org/10.1186/s12348-022-00293-3

Fang W, Zhou H, Yang P, Huang X, Wang L, Kijlstra A. Longitudinal quantification of aqueous flare and cells in Vogt-Koyanagi-Harada disease. Br J Ophthalmol. 2008;92:182-5. https://doi.org/10.1136/bjo.2007.128967

Maruyama K, Noguchi A, Shimizu A, Shiga Y, Kunikata H, Nakazawa T. Predictors of recurrence in Vogt-Koyanagi-Harada disease. Ophthalmol Retina. 2018;2:343-50. https://doi.org/10.1016/j.oret.2017.07.016

Murata T, Sako N, Takayama K, Harimoto K, Kanda K, Herbort CP, et al. Identification of underlying inflammation in Vogt-Koyanagi-Harada disease with sunset glow fundus by multiple analyses. J Ophthalmol. 2019;2019:1-7. https://doi.org/10.1155/2019/3853794

Tugal-Tutkun I, Herbort CP. Laser flare photometry: a noninvasive objective, and quantitative method to measure intraocular inflammation. Int Ophthalmol. 2010;30:453-64. https://doi.org/10.1007/s10792-009-9310-2

Tappeiner C, Heinz C, Roesel M, Heiligenhaus A. Elevated laser flare values correlate with complicated course of anterior uveitis in patients with juvenile idiopathic arthritis. Acta Ophthalmol. 2011;89(6):e521-e7. https://doi.org/10.1111/j.1755-3768.2011.02162.x

Biziorek B, Zarnowski T, Zagórski Z. Ocena i monitorowanie wybranych postaci zapalenia błony naczyniowej przy uzyciu tyndalometrii laserowej [Evaluation and monitoring of selected inflammation patterns in uveitis using laser tyndallometry]. Klin Oczna. 2000;102(3):169-72.

Inoue M, Azumi A, Shirabe H, Tsukahara Y, Yamamoto M. Laser flare intensity in diabetics: correlation with retinopathy and aqueous protein concentration. Br J Ophthalmol. 1994;78(9):694-7. https://doi.org/10.1136/bjo.78.9.694

Nguyen NX, Kuchle M. Aqueous flare and cells in eyes with retinal vein occlusion-correlation with retinal fluorescein angiographic findings. Br J Ophthalmol. 1993;77:280-3. https://doi.org/10.1136/bjo.77.5.280

Kubota T, Motomatsu K, Sakamoto M, Honda T, Ishibashi T. Aqueous flare in eyes with senile disciform macular degeneration: correlation with clinical stage and area of neovascular membrane. Graefes Arch Clin Exp Ophthalmol. 1996;234(5):285-7. https://doi.org/10.1007/BF00220701

Küchle M, Nguyen NX, Martus P, Freissler K, Schalnus R. Aqueous flare in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 1998;236(6):426-33. https://doi.org/10.1007/s004170050101

Castella AP, Bercher L, Zografos L, Egger E, Herbort CP. Study of the blood-aqueous barrier in choroidal melanoma. Br J Ophthalmol. 1995;79(4):354-7. https://doi.org/10.1136/bjo.79.4.354

Moriarty AP, Spalton DJ, Moriarty BJ, Shilling JS, Ffytche TJ, Bulsara M. Studies of the blood-aqueous barrier in diabetes mellitus. Am J Ophthalmol. 1994;117(6):768-71. https://doi.org/10.1016/S0002-9394(14)70320-4

Oshika T, Kato S, Funatsu H. Quantitative assessment of aqueous flare intensity in diabetes. Graefes Arch Clin Exp Ophthalmol. 1989;227(6):518-20. https://doi.org/10.1007/BF02169443

Atik BK, Altan C, Pehlivanoglu S, Ahmet S. Aqueous Flare and Intraocular Pressure in the Early Period Following Panretinal Photocoagulation in Patient with Proliferative Diabetic Retinopathy. Beyoglu Eye J. 2023;8(1):26-31. https://doi.org/10.14744/bej.2022.13471

Nguyen NX, Schonherr U, Kuchle M. Aqueous flare and retinal capillary changes in eyes with diabetic retinopathy. Ophthalmologica. 1995;209:145-8. https://doi.org/10.1159/000310601

Laurell CG, Zetterström C, Philipson B, Syrén-Nordqvist S. Randomized study of the blood-aqueous barrier reaction after phacoemulsification and extracapsular cataract extraction. Acta Ophthalmol Scand. 1998;76:573-8. https://doi.org/10.1034/j.1600-0420.1998.760512.x

De Maria M, Coassin M, Mastrofilippo V, Cimino L, Iannetta D, Fontana L. Persistence of inflammation after uncomplicated cataract surgery: A 6-month laser flare photometry analysis. Adv Ther. 2020;37:3223-33. https://doi.org/10.1007/s12325-020-01383-1

Nguyen NX, Küchle M, Martus P, Naumann GO. Quantification of blood-aqueous barrier breakdown after trabeculectomy: pseudoexfoliation versus primary open-angle glaucoma. J Glaucoma. 1999;8(1):18-23. https://doi.org/10.1097/00061198-199902000-00006

Tanito M, Manabe K, Mochiji M, Takai Y, Matsuoka Y. Comparison of anterior chamber flare among different glaucoma surgeries. Clin Ophthalmol. 2019;13:1609-12. https://doi.org/10.2147/OPTH.S219715

Mulder VC, van Dijk EHC, van Meurs IA, La Heij EC, van Meurs JC. Postoperative aqueous humour flare as a surrogate marker for proliferative vitreoretinopathy development. Acta Ophthalmol. 2018;96(2):192-6.

https://doi.org/10.1111/aos.13560

Tetsumoto A, Imai H, Otsuka K, Matsumiya W, Miki A, Nakamura M. Clinical factors contributing to postoperative aqueous flare intensity after 27-gauge pars plana vitrectomy for the primary rhegmatogenous retinal detachment. Jpn J Ophthalmol. 2019;63(4):317-21. doi: 10.1007/s10384-019-00672-9. https://doi.org/10.1007/s10384-019-00672-9

Matthaei M, Fassin A, Mestanoglu M, Howaldt A, Schrittenlocher SA, Schlereth S, et al. Blood-Aqueous Barrier Disruption in Penetrating and Posterior Lamellar Keratoplasty: Implications for Clinical Outcome. Klin Monbl Augenheilkd. 2023;240(5):677-82. https://doi.org/10.1055/a-2076-7829

Baydoun L, Chang Lam F, Schaal S, Hsien S, Oellerich S, van Dijk K, et al. Quantitative Assessment of Aqueous Flare After Descemet Membrane Endothelial Keratoplasty for Fuchs Endothelial Dystrophy. Cornea. 2018;37(7):848-53. https://doi.org/10.1097/ICO.0000000000001576

De Maria M, Coassin M, Iannetta D, Fontana L. Laser flare and cell photometry to measure inflammation after cataract surgery: a tool to predict the risk of cystoid macular edema. Int Ophthalmol. 2021;41(6):2293-300. https://doi.org/10.1007/s10792-021-01779-0

Miyake K, Masuda K, Shirato S, Oshika T, Eguchi K, Hoshi H, et al. Comparison of diclofenac and fluorometholone in preventing cystoid macular edema after small incision cataract surgery: A multicentered prospective trial. Jpn J Ophthalmol. 2000;44:58-67. https://doi.org/10.1016/S0021-5155(99)00176-8

Miyake K, Ota I, Miyake G, Numaga J. Nepafenac 0.1% versus fluorometholone 0.1% for preventing cystoid macular edema after cataract surgery. J Cataract Refract Surg. 2011;37:1581-8. https://doi.org/10.1016/S0021-5155(99)00176-8

Fardeau C, Herbort CP, Nghiem S, Jarlier V, Lehoang P. Laser flare photometry in the therapeutic management of bacterial chronic pseudophakic endophthalmitis. J Cataract Refract Surg. 2009;35:98-104.

https://doi.org/10.1016/j.jcrs.2008.09.010

Uzun A, Yalcindag FN, Demirel S, Batyoethlu F, Ozmert E. Evaluation of aqueous flare levels following intravitreal Ranibizumab injection for Neovascular age-related macular degeneration. Ocul Immunol Inflamm. 2017;25:229-32. https://doi.org/10.3109/09273948.2015.1108445

Yeniad B, Ayranci O, Tuncer S, Kir N, Ovali T, Tugal-Tutkun I, et al. Assessment of anterior chamber inflammation after intravitreal bevacizumab injection in different ocular exudative diseases. Eur J Ophthalmol. 2011;21:156-61. https://doi.org/10.5301/EJO.2010.5239

Papadia M, Misteli M, Jeannin B, Herbort CP. The influence of anti-VEGF therapy on present day management of macular edema due to BRVO and CRVO: a longitudinal analysis on visual function, injection time interval and complications. Int Ophthalmol. 2014;34:1193-201. https://doi.org/10.1007/s10792-014-0002-1

Lages V, Gehrig B, Herbort CP Jr. Laser flare photometry: a cost-effective method for early detection of endophthalmitis after intravitreal injection of anti-VEGF agents. J Ophthalmic Inflamm Infect. 2018;8(1):23.

https://doi.org/10.1186/s12348-018-0165-4

Dorokhova O, Zborovska O, Meng G, Zadorozhnyy O. Temperature of the ocular surface in the projection of the ciliary body in rabbits. J Ophthalmol (Ukraine). 2020;2(493):65-9.

https://doi.org/10.31288/oftalmolzh202026569

Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Nazaretyan R, Zadorozhnyy O. Prospects of Temperature Management in Vitreoretinal Surgery. Ther Hypothermia Temp Manag. 2021;11(2):117-21.

https://doi.org/10.1089/ther.2020.0019

Wang C, Jiao H, Anatychuk L, Pasyechnikova N, Naumenko V, Zadorozhnyy O, et al. Development of a Temperature and Heat Flux Measurement System Based on Microcontroller and its Application in Ophthalmology. Measurement Science Review. 2022;22(2):73-9. https://doi.org/10.2478/msr-2022-0009

Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Gavrilyuk MV, Kobylianskyi RR. A thermoelectric device for ophthalmic heat flux density measurements: results of piloting in healthy individuals. J Ophthalmol (Ukraine). 2019; 3:45-51. https://doi.org/10.31288/oftalmolzh201934551

Bakker E, Dikland FA, van Bakel R, Andrade De Jesus D, Sánchez Brea L, et al. Adaptive optics ophthalmoscopy: a systematic review of vascular biomarkers. Surv Ophthalmol. 2022;67(2):369-87.

https://doi.org/10.1016/j.survophthal.2021.05.012

Zadorozhnyy O, Korol A, Nasinnyk I, Kustryn T, Naumenko V, Pasyechnikova N. Precise in vivo adaptive optics imaging of retinal vessels. J Ophthalmol (Ukraine). 2023;2:31-8. https://doi.org/10.31288/oftalmolzh202323138

Peretiahina DO, Ulianova NA. SS-OCT-derived morphometric changes in the choroid in patients with age-related macular degeneration. J Ophthalmol (Ukraine). 2019;6:63-9. https://doi.org/10.31288/oftalmolzh201966369

Published

2023-09-04

How to Cite

1.
Zborovska O, Dorokhova O, Korol A, Troyanovska K, Zadorozhnyy O, Kolesnichenko V, Pasyechnikova N. Assessing quantitatively the state of the blood-aqueous barrier by laser flare photometry: a review. J.ophthalmol. (Ukraine) [Internet]. 2023 Sep. 4 [cited 2024 Nov. 8];(4):67-73. Available from: https://ua.ozhurnal.com/index.php/files/article/view/56