Preconditioning-induced retinal protection appears promising: a review

Authors

  • Oleg Zadorozhnyy Filatov Institute of Eye Disease and Tissue Therapy, National Academy of Medical Science https://orcid.org/0000-0003-0125-2456
  • Andrii Korol Filatov Institute of Eye Disease and Tissue Therapy, National Academy of Medical Science https://orcid.org/0000-0003-0516-308X
  • Nataliya Pasyechnikova Filatov Institute of Eye Disease and Tissue Therapy, National Academy of Medical Science

DOI:

https://doi.org/10.31288/oftalmolzh202336170

Keywords:

preconditioning, ishcmic injury, phototoxic injury, heart, brain, retina

Abstract

Like human and animal myocardium and cerebral nervous tissue, the human and animal retina has powerful intrinsic adaptive mechanisms which can improve cell protection under adverse conditions. These endogenous protective mechanisms are capable of improving the resistance of retinal cells to adverse factors and can be triggered by brief episodes of different subthreshold stimuli (ischemia, photobiomodulation, hypothermia, etc.) preceding a subsequent more sustained injury, a process which is called preconditioning. Results of years of laboratory and clinical studies have demonstrated amazing cardiac protection and cerebral protection opportunities from preconditioning. Although the results of in vivo preclinical studies of retinal conditioning are promising, the benefits from the found effects of preconditioning on the protection of the human retina are still to be assessed. The overview presented highlights some aspects of the research and use of protective effects of preconditioning in various fields of medicine. The results of laboratory studies of endogenous mechanisms of retinal cell protection are discussed herein, along with our recommendations for prospective areas of future use of the effects in cinical ophthalmology for retinal protection.

References

Steiger HJ, Hänggi D. Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir (Wien). 2007;149(1):1-10. https://doi.org/10.1007/s00701-006-1057-1

Deferrari G, Bonanni A, Bruschi M, et al. Remote ischaemic preconditioning for renal and cardiac protection in adult patients undergoing cardiac surgery with cardiopulmonary bypass: systematic review and meta-analysis of randomized controlled trials. Nephrol Dial Transplant. 2018;33(5):813-824. https://doi.org/10.1093/ndt/gfx210

Kitagawa K. Ischemic tolerance in the brain: Endogenous adaptive machinery against ischemic stress. J Neurosci Res. 2012;90:1043-1054. https://doi.org/10.1002/jnr.23005

Belforte N, Sande PH, de Zavalía N, et al. Ischemic tolerance protects the rat retina from glaucomatous damage. PLoS One. 2011;6(8):e23763. https://doi.org/10.1371/journal.pone.0023763

Golomb E, Nyska A, Schwalb H. Occult cardiotoxicity--toxic effects on cardiac ischemic tolerance. Toxicol Pathol. 2009;37(5):572-93. https://doi.org/10.1177/0192623309339503

Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7(6):437-48. https://doi.org/10.1038/nrn1927

Yunoki M, Kanda T, Suzuki K, et al. Ischemic Tolerance of the Brain and Spinal Cord: A Review. Neurol Med Chir (Tokyo). 2017;57(11):590-600. https://doi.org/10.2176/nmc.ra.2017-0062

Gidday JM. Adaptive Plasticity in the Retina: Protection Against Acute Injury and Neurodegenerative Disease by Conditioning Stimuli. Cond Med. 2018;1(2):85-97. https://doi.org/10.4103/2394-8108.166379

Hao Y, Xin M, Feng L, et al. Review Cerebral Ischemic Tolerance and Preconditioning: Methods, Mechanisms, Clinical Applications, and Challenges. Front Neurol. 2020;11:812. https://doi.org/10.3389/fneur.2020.00812

Dahl NA, Balfour WM. Prolonged anoxic survival due to anoxia pre-exposure: brain ATP, lactate, and pyruvate. Am J Physiol. 1964;207:452-456. https://doi.org/10.1152/ajplegacy.1964.207.2.452

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124-1136. https://doi.org/10.1161/01.CIR.74.5.1124

Davis DP, Patel PM. Ischemic preconditioning in the brain. Curr Opin Anaesthesiol. 2003;16:447-452. https://doi.org/10.1097/00001503-200310000-00002

Schaller B, Graf R. Cerebral ischemic preconditioning. An experimental phenomenon or a clinical important entity of stroke prevention? J Neurol. 2002;249:1503-1511. https://doi.org/10.1007/s00415-002-0933-8

Kharbanda RK, Nielsen TT, Redington AN. Translation of remote ischaemic preconditioning into clinical practice. Lancet. 2009;374:1557-1565. https://doi.org/10.1016/S0140-6736(09)61421-5

Speechly-Dick ME, Grover GJ, Yellon DM. Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model. Circ Res. 1995;77:1030-1035. https://doi.org/10.1161/01.RES.77.5.1030

Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87:893-899. https://doi.org/10.1161/01.CIR.87.3.893

Pell TJ, Baxter GF, Yellon DM, Drew GM. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol. 1998;275(5):1542-1547. https://doi.org/10.1152/ajpheart.1998.275.5.H1542

Gho BC, Schoemaker RG, van den Doel MA, et al. Myocardial protection by brief ischemia in noncardiac tissue. Circulation. 1996;94:2193-2200. https://doi.org/10.1161/01.CIR.94.9.2193

Addison PD, Neligan PC, Ashrafpour H, et al. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol. 2003;285(4):1435-1443. https://doi.org/10.1152/ajpheart.00106.2003

Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation. 1997;96:1641-1646. https://doi.org/10.1161/01.CIR.96.5.1641

Hausenloy DJ, Mwamure PK, Venugopal V, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575-579. https://doi.org/10.1016/S0140-6736(07)61296-3

Hausenloy DJ, Yellon DM. The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol. 2011;8:619-629. https://doi.org/10.1038/nrcardio.2011.85

Thielmann M, Kottenberg E, Kleinbongard P, et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet. 2013;382(9892):597-604. https://doi.org/10.1016/S0140-6736(13)61450-6

Veighey KV, Nicholas JM, Clayton T, et al. Early remote ischaemic preconditioning leads to sustained improvement in allograft function after live donor kidney transplantation: long-term outcomes in the REnal Protection Against Ischaemia-Reperfusion in transplantation (REPAIR) randomised trial. Br J Anaesth. 2019;123(5):584-591. https://doi.org/10.1016/j.bja.2019.07.019

Sangeetha RP, Venkatapura RJ, Kamath S, et al. Effect of remote ischemic preconditioning on cerebral vasospasm, biomarkers of cerebral ischemia, and functional outcomes in aneurysmal subarachnoid hemorrhage (ERVAS): A randomized controlled pilot trial. Brain Circ. 2021;7(2):104-110. https://doi.org/10.4103/bc.bc_13_21

Ali ZA, Callaghan CJ, Lim E, et al. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation. 2007;116(11):98-105. https://doi.org/10.1161/circulationaha.106.679167

Weber NC, Zuurbier CJ, Hollmann MW. Remote ischaemic preconditioning of the lung: from bench to bedside-are we there yet? J Thorac Dis. 2018;10(1):98-101. https://doi.org/10.21037/jtd.2017.12.75

Ikeda T, Xia XY, Xia YX, Ikenoue T. Hyperthermic preconditioning prevents blood-brain barrier disruption produced by hypoxia-ischemia in newborn rat. Brain Res. 1999;117:53-58. https://doi.org/10.1016/S0165-3806(99)00097-8

Yunoki M, Nishio S, Ukita N, et al. Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat. Exp Neurol. 2003;181:291-300. https://doi.org/10.1016/S0014-4886(03)00056-6

Sharp FR, Ran R, Lu A, et al. Hypoxic preconditioning protects against ischemic brain injury. NeuroRx. 2004;1(1):26-35. https://doi.org/10.1602/neurorx.1.1.26

Wang L, Traystman RJ, Murphy SJ. Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol. 2008;8:104-110. https://doi.org/10.1016/j.coph.2007.09.005

Lee HI, Park JH, Park MY, et al. Pre-conditioning with transcranial low-level light therapy reduces neuroinflammation and protects blood-brain barrier after focal cerebral ischemia in mice. Restor Neurol Neurosci. 2016;34(2):201-214. https://doi.org/10.3233/RNN-150559

Hausenloy DJ. Cardioprotection techniques: preconditioning, postconditioning and remote conditioning (basic science). Curr Pharm Des. 2013;19(25):4544-4563. https://doi.org/10.2174/1381612811319250004

Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009;204(2):334-41. https://doi.org/10.1016/j.atherosclerosis.2008.10.029

Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007;75(3):530-535. https://doi.org/10.1016/j.cardiores.2007.04.022

Liu X, Sha O, Cho EY. Remote ischemic postconditioning promotes the survival of retinal ganglion cells after optic nerve injury. J Mol Neurosci. 2013;51(3):639-646. https://doi.org/10.1007/s12031-013-0036-2

Wang R, Wu J, Chen Z, et al. Postconditioning with inhaled hydrogen promotes survival of retinal ganglion cells in a rat model of retinal ischemia/reperfusion injury. Brain Res. 2016;1632:82-90. https://doi.org/10.1016/j.brainres.2015.12.015

Dezfulian C, Garrett M, Gonzalez NR. Clinical application of preconditioning and postconditioning to achieve neuroprotection. Transl Stroke Res. 2013;4(1):19-24. https://doi.org/10.1007/s12975-012-0224-3

Ren C, Wu H, Li D, et al. Remote Ischemic Conditioning Protects Diabetic Retinopathy in Streptozotocin-induced Diabetic Rats via Anti-Inflammation and Antioxidation. Aging Dis. 2018;9(6):1122-1133. https://doi.org/10.14336/AD.2018.0711

Walker DM, Yellon DM. Ischaemic preconditioning: from mechanisms to exploitation. Cardiovasc Res. 1992;92:734-739. https://doi.org/10.1093/cvr/26.8.734

Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet. 1993;342(8866):276-277. https://doi.org/10.1016/0140-6736(93)91819-8

Tomai F, Crea F, Chiariello L, Gioffrè PA. Ischemic preconditioning in humans: models, mediators, and clinical relevance. Circulation. 1999;100(5):559-563. https://doi.org/10.1161/01.CIR.100.5.559

Kloner RA, Shook T, Przyklenk K, et al. Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning? Circulation. 1995;91(1):37-45. https://doi.org/10.1161/01.CIR.91.1.37

Andreotti F, Pasceri V, Hackett DR, et al. Preinfarction angina as a predictor of more rapid coronary thrombolysis in patients with acute myocardial infarction. N Engl J Med. 1996;334:7-12. https://doi.org/10.1056/NEJM199601043340102

Deutsch E, Berger M, Kussmaul WG, et al. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation. 1990;82:2044-2051. https://doi.org/10.1161/01.CIR.82.6.2044

Tomai F, Crea F, Gaspardone A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation. 1994;90:700-705. https://doi.org/10.1161/01.CIR.90.2.700

Claeys MJ, Vrints CJ, Bosmans JM, et al. Aminophylline inhibits adaptation to ischemia during angioplasty. Role of adenosine in ischemic preconditioning. Eur Heart J. 1996;17:539-544. https://doi.org/10.1093/oxfordjournals.eurheartj.a014906

Shiki K, Hearse DJ. Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias. Am J Physiol. 1987;253:1470-1476. https://doi.org/10.1152/ajpheart.1987.253.6.H1470

Vegh A, Papp JG, Parrat JR. Prevention by dexamethasone of the marked antiarrhythmic effects of preconditioning induced 20 h after rapid cardiac pacing. Br J Pharmacol. 1994;113:1081-1082. https://doi.org/10.1111/j.1476-5381.1994.tb17104.x

Cohen MV, Liu GS, Downey JM. Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation. 1991;84:341-349. https://doi.org/10.1161/01.CIR.84.1.341

Sun JZ, Tang XL, Knowlton AA, et al. Late preconditioning against myocardial stunning: an endogenous protective mechanism that confers resistance to postischemic dysfunction 24 hours after brief ischemia in conscious pigs. J Clin Invest. 1995;95:388-403. https://doi.org/10.1172/JCI117667

Cheung MM, Kharbanda RK, Konstantinov IE, et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006;47(11):2277-2282. https://doi.org/10.1016/j.jacc.2006.01.066

Rahman IA, Mascaro JG, Steeds RP, et al. Remote ischemic preconditioning in human coronary artery bypass surgery: from promise to disappointment? Circulation. 2010;122(11):53-59. https://doi.org/10.1161/CIRCULATIONAHA.109.926667

Hong DM, Lee EH, Kim HJ, et al. Does remote ischaemic preconditioning with postconditioning improve clinical outcomes of patients undergoing cardiac surgery? Remote Ischaemic Preconditioning with Postconditioning Outcome Trial. Eur Heart J. 2014;35(3):176-183. https://doi.org/10.1093/eurheartj/eht346

Meybohm P, Kohlhaas M, Stoppe C, et al. RIPHeart (Remote Ischemic Preconditioning for Heart Surgery) Study: Myocardial Dysfunction, Postoperative Neurocognitive Dysfunction, and 1 Year Follow-Up. J Am Heart Assoc. 2018;7(7):e008077. https://doi.org/10.1161/JAHA.117.008077

Coverdale NS, Hamilton A, Petsikas D, et al. Remote Ischemic Preconditioning in High-risk Cardiovascular Surgery Patients: A Randomized-controlled Trial. Semin Thorac Cardiovasc Surg. 2018;30(1):26-33. https://doi.org/10.1053/j.semtcvs.2017.09.001

Xie J, Zhang X, Xu J, et al. Effect of Remote Ischemic Preconditioning on Outcomes in Adult Cardiac Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Studies. Anesth Analg. 2018;127(1):30-38. https://doi.org/10.1213/ANE.0000000000002674

Harky A, Joshi M, Gupta S, et al. Acute Kidney Injury Associated with Cardiac Surgery: A Comprehensive Literature Review. Braz. J. Cardiovasc. Surg. 2020;35:211-224. https://doi.org/10.21470/1678-9741-2019-0122

Tomai F, Crea F, Gaspardone A, et al. Phentolamine prevents adaptation to ischemia during coronary angioplasty. Role of α-adrenergic receptors in ischemic preconditioning. Circulation. 1997;96:2171-2177. https://doi.org/10.1161/01.CIR.96.7.2171

Cleveland JC, Meldrum DR, Cain BS, et al. Oral sulfonylurea hypoglicemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation. 1997;96:29-32. https://doi.org/10.1161/01.CIR.96.1.29

Schubert SA, Kron IL. Remote Ischemic Preconditioning: A Complex Question with an Even More Complex Answer. Semin Thorac Cardiovasc Surg. 2018;30(1):34-35. https://doi.org/10.1053/j.semtcvs.2018.02.020

Moncayo J, de Freitas GR, Bogousslavsky J, et al. Do transient ischemic attacks have a neuroprotective effect? Neurology. 2000;54:2089-2094. https://doi.org/10.1212/WNL.54.11.2089

Wegener S, Gottschalk B, Jovanovic V, et al. Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke. 2004;36:616-621. https://doi.org/10.1161/01.STR.0000115767.17923.6A

Chan MT, Boet R, Ng SC, et al. Effect of ischemic preconditioning on brain tissue gases and pH during temporary cerebral artery occlusion. Acta Neurochir Suppl. 2005;95:93-96. https://doi.org/10.1007/3-211-32318-X_20

Ferch R, Pasqualin A, Pinna G, et al. Temporary arterial occlusion in the repair of ruptured intracranial aneurysms: an analysis of risk factors for stroke. J Neurosurg. 2002;97:836-842. https://doi.org/10.3171/jns.2002.97.4.0836

Meng R, Asmaro K, Meng L, et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79(18):1853-1861. https://doi.org/10.1212/WNL.0b013e318271f76a

Sales AHA, Barz M, Bette S, et al. Impact of ischemic preconditioning on surgical treatment of brain tumors: a single-center, randomized, double-blind, controlled trial. BMC Med. 2017;15(1):137. https://doi.org/10.1186/s12916-017-0898-1

Caprioli J, Kitano S, Morgan JE. Hyperthermia and hypoxia increase tolerance of retinal ganglion cells to anoxia and excitotoxicity. Invest Ophthalmol Vis Sci. 1996;37:2376-2381.

Roth S, Li B, Rosenbaum PS, et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci. 1998;39:775-785.

Sakamoto K, Yonoki Y, Kuwagata M, et al. Histological protection against ischemia-reperfusion injury by early ischemic preconditioning in rat retina. Brain Res. 2004;1015(1-2):154-160. https://doi.org/10.1016/j.brainres.2004.04.074

Li B, Roth S. Retinal ischemic preconditioning in the rat: requirement for adenosine and repetitive induction. Invest Ophthalmol Vis Sci. 1999;40:1200-1216.

Dreixler JC, Shaikh AR, Shenoy SK, et al. Protein kinase C subtypes and retinal ischemic preconditioning. Exp Eye Res. 2008;87:300-311. https://doi.org/10.1016/j.exer.2008.05.015

Li Y, Roth S, Laser M, et al. Retinal preconditioning and the induction of heat-shock protein 27. Invest Ophthalmol Vis Sci. 2003;44(3):1299-1304. https://doi.org/10.1167/iovs.02-0235

Roth S, Shaikh AR, Hennelly MM, et al. Mitogen-activated protein kinases and retinal ischemia. Invest Ophthalmol Vis Sci. 2003;44(12):5383-5395. https://doi.org/10.1167/iovs.03-0451

Roth S, Dreixler JC, Shaikh AR, et al. Mitochondrial potassium ATP channels and retinal ischemic preconditioning. Invest Ophthalmol Vis Sci. 2006;47(5):2114-2124. https://doi.org/10.1167/iovs.05-1068

Zhang C, Rosenbaum DM, Shaikh AR, et al. Ischemic preconditioning attenuates apoptotic cell death in the rat retina. Invest Ophthalmol Vis Sci. 2002;43(9):3059-3066.

Dreixler JC, Hagevik S, Hemmert JW, et al. Involvement of erythropoietin in retinal ischemic preconditioning. Anesthesiology. 2009;110(4):774-780. https://doi.org/10.1097/ALN.0b013e31819c4601

Li B, Yang C, Rosenbaum DM, Roth S. Signal transduction mechanisms involved in ischemic preconditioning in the rat retina in vivo. Exp Eye Res. 2000;70:755-765. https://doi.org/10.1006/exer.2000.0843

Fan J, Alsarraf O, Chou CJ, et al. Ischemic preconditioning, retinal neuroprotection and histone deacetylase activities. Exp Eye Res. 2016;146:269-275. https://doi.org/10.1016/j.exer.2016.03.026

Nonaka A, Kiryu J, Tsujikawa A, et al. Inhibitory effect of ischemic preconditioning on leukocyte participation in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2001;42(10):2380-2385.

Nishiyama T, Nishukawa S, Tomita H, Tamai M. Müller cells in the preconditioned retinal ischemic injury rat. Tohoku J Exp Med. 2000;191(4):221-232. https://doi.org/10.1620/tjem.191.221

Lin J, Roth S. Ischemic preconditioning attenuates hypoperfusion after retinal ischemia in rats. Invest Ophthalmol Vis Sci. 1999;40(12):2925-2931.

Casson RJ, Wood JP, Melena J, et al. The effect of ischemic preconditioning on light-induced photoreceptor injury. Invest Ophthalmol Vis Sci. 2003;44(3):1348-1354. https://doi.org/10.1167/iovs.02-0368

Brandli A, Johnstone DM, Stone J. Remote Ischemic Preconditioning Protects Retinal Photoreceptors: Evidence From a Rat Model of Light-Induced Photoreceptor Degeneration. Invest Ophthalmol Vis Sci. 2016;57(13):5302-5313. https://doi.org/10.1167/iovs.16-19361

Faktorovich EG, Steinberg RH, Yasumura D, et al. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature. 1990;347(6288):83-86. https://doi.org/10.1038/347083a0

Faktorovich EG, Steinberg RH, Yasumura D, et al. Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci. 1992;12(9):3554-3567. https://doi.org/10.1523/JNEUROSCI.12-09-03554.1992

Wen R, Song Y, Cheng T, et al. Injury-induced upregulation of bFGF and CNTF mRNAS in the rat retina. J Neurosci. 1995;15(11):7377-7385. https://doi.org/10.1523/JNEUROSCI.15-11-07377.1995

Salido EM, Dorfman D, Bordone M, et al. Global and ocular hypothermic preconditioning protect the rat retina from ischemic damage. PLoS One. 2013;8(4):e61656. https://doi.org/10.1371/journal.pone.0061656

Liu C, Peng M, Laties AM, Wen R. Preconditioning with bright light evokes a protective response against light damage in the rat retina. J Neurosci. 1998;18:1337-1344. https://doi.org/10.1523/JNEUROSCI.18-04-01337.1998

Albarracin R, Eells J, Valter K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2011;52(6):3582-3592. https://doi.org/10.1167/iovs.10-6664

Albarracin R, Valter K. 670 nm red light preconditioning supports Müller cell function: evidence from the white light-induced damage model in the rat retina. Photochem Photobiol. 2012;88(6):1418-1427. https://doi.org/10.1111/j.1751-1097.2012.01130.x

Ștefan M, Predoi C, Goicea R, Filipescu D. Volatile Anaesthesia versus Total Intravenous Anaesthesia for Cardiac Surgery-A Narrative Review. J Clin Med. 2022;11(20):6031. https://doi.org/10.3390/jcm11206031

Guerrero-Orriach J.L., Carmona-Luque M.D., Gonzalez-Alvarez L. Heart Failure after Cardiac Surgery: The Role of Halogenated Agents, Myocardial Conditioning and Oxidative Stress. Int J Mol Sci. 2022;23:1360. https://doi.org/10.3390/ijms23031360

Codaccioni JL, Velly LJ, Moubarik C, et al. Sevoflurane preconditioning against focal cerebral ischemia. Anesthesiology. 2009;110:1271-1278. https://doi.org/10.1097/ALN.0b013e3181a1fe68

Fukazawa K., Lee H.T. Volatile Anesthetics and AKI: Risks, Mechanisms, and a Potential Therapeutic Window. J Am Soc Nephrol. 2014;25:884-892. https://doi.org/10.1681/ASN.2013111215

Iliescu DA, Ciubotaru A, Ghiţă MA, et al. Effect of sevoflurane preconditioning on light-induced retinal damage in diabetic rats. Rom J Ophthalmol. 2018;62(1):24-33. https://doi.org/10.22336/rjo.2018.4

Zhu Y, Zhang Y, Ojwang BA, et al. Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning: role of HIF-1alpha and heme oxygenase-1. Invest Ophthalmol Vis Sci. 2007;48(4):1735-1743. https://doi.org/10.1167/iovs.06-1037

Zhu Y, Zhang L, Schmidt JF, Gidday JM. Glaucoma-induced degeneration of retinal ganglion cells prevented by hypoxic preconditioning: a model of glaucoma tolerance. Mol Med. 2012;18(1):697-706. https://doi.org/10.2119/molmed.2012.00050

Barbe MF, Tytell M, Gower DJ, Welch WJ. Hyperthermia protects against light damage in the rat retina. Science. 1988;241:1817-1820. https://doi.org/10.1126/science.3175623

Wang R, Xu J, Xie J, et al. Hyperbaric oxygen preconditioning promotes survival of retinal ganglion cells in a rat model of optic nerve crush. J Neurotrauma. 2010;27:763-770. https://doi.org/10.1089/neu.2009.1005

Sharma RK, Netland PA, Kedrov MA, Johnson DA. Preconditioning protects the retinal pigment epithelium cells from oxidative stress-induced cell death. Acta Ophthalmol. 2009;87(1):82-88. https://doi.org/10.1111/j.1755-3768.2008.01170.x

Chrenek MA, Sellers JT, Lawson EC, et al. Exercise and Cyclic Light Preconditioning Protect Against Light-Induced Retinal Degeneration and Evoke Similar Gene Expression Patterns. Adv Exp Med Biol. 2016;854:443-448. https://doi.org/10.1007/978-3-319-17121-0_59

Koch S. Preconditioning the human brain: practical considerations for proving cerebral protection. Transl Stroke Res. 2010;1(3):161-169. https://doi.org/10.1007/s12975-010-0025-5

Rossi T, Querzoli G, Angelini G, et al. Ocular perfusion pressure during pars plana vitrectomy: a pilot study. Invest Ophthalmol Vis Sci. 2014;55(12):8497-8505. https://doi.org/10.1167/iovs.14-14493

Postel EA, Pulido JS, Byrnes GA, et al. Long-term follow-up of iatrogenic phototoxicity. Arch Ophthalmol. 1998;116(6):753-757. https://doi.org/10.1001/archopht.116.6.753

Cheng L, Azen SP, El-Bradey MH, et al. Duration of vitrectomy and postoperative cataract in the vitrectomy for macular hole study. Am J Ophthalmol. 2001;132(6):881-887. https://doi.org/10.1016/S0002-9394(01)01263-6

Anatychuk L, Pasyechnikova N, Naumenko V, et al. Prospects of Temperature Management in Vitreoretinal Surgery. Ther Hypothermia Temp Manag. 2021;11(2):117-121. https://doi.org/10.1089/ther.2020.0019

Zadorozhnyy O, Korol A, Nasinnyk I, et al. Photobiomodulation therapy in ophthalmology. J Ophthalmol (Ukraine). 2022;5:47-53. https://doi.org/10.31288/oftalmolzh202254753

Anatychuk LI, Pasechnikova NV, Naumenko VO, et al. Thermoelectric device for contact cooling of the human eye. Physics and Chemistry of Solid State. 2020;21(1),140-145. https://doi.org/10.15330/pcss.21.1.140-145

Anatychuk LI, Pasechnikova NV, Naumenko VO, et al. Thermoelectric device for non-contact cooling of the human eyes. J Thermoelectricity. 2020;4:56-68.

Ozbay D, Ozden S, Müftüoğlu S, et al. Protective effect of ischemic preconditioning on retinal ischemia-reperfusion injury in rats. Can J Ophthalmol. 2004;39(7):727-732. https://doi.org/10.1016/S0008-4182(04)80066-8

Toprak AB, Ozbilgin K, Toprak V, et al. A histological analysis of the protective effect of ischemic preconditioning in the rat retina. Curr Eye Res. 2002;24(3):234-239. https://doi.org/10.1076/ceyr.24.3.234.8308

Published

2023-06-30

How to Cite

1.
Zadorozhnyy O, Korol A, Pasyechnikova N. Preconditioning-induced retinal protection appears promising: a review. J.ophthalmol. (Ukraine) [Internet]. 2023 Jun. 30 [cited 2024 May 1];(3):61-70. Available from: https://ua.ozhurnal.com/index.php/files/article/view/41