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The protection of human tissues and organs from 
ischemic damage is a key trend of contemporary medicine.
[1, 2] Tissues with a high sensitivity against ischaemia, i.e. 
myocardium, central nervous system and retina, present 
the most promising targets for therapeutic application of 
novel protection techniques. Results of studies indicated 
that these tissues have powerful endogenous adaptive 
mechanisms which can improve both the resistance to 
ischemic damage and post-ischemic recovery.[3-9]

As early as 1964, Dahl and Balfour [10], in an 
experimental rat study, found that a brief preliminary 
exposure to anoxia improved brain tissue tolerance to 
subsequent longer anoxia, which the authors suggested 
was due to increased anaerobic glycolysis.[11] Murry 
and colleagues (1986) [12] reported that brief episodes 
of subthreshold coronary ischemia-reperfusion preceding 
a subsequent more sustained period of coronary artery 
occlusion in dogs protected or "preconditioned" the heart 
and limited infarct size to 25% of that seen in the control 
group. The authors suggested that the protective effect 
of preconditioning may be due to reduced adenosine 
triphosphate (ATP) depletion and/or to reduced catabolite 
accumulation during the sustained occlusion.[11]

Recent decades have demonstrated significant progress 
in identifying endogenous reactions protecting against 

ischemia and using them in routine clinical practice. 
Numerous animal studies and subsequent clinical studies 
have demonstrated that tissue preconditioning with brief 
sublethal ischemic stimuli is a powerful endogenous 
protection from cerebral ischemia, ischemic myocardial 
injury and their consequences.[12-15] The concept of 
ischemic preconditioning (IPC) implied that a brief 
subcritical ischemic challenge could mobilize intrinsic 
protective mechanisms, increasing tolerance against 
subsequent critical ischemia.[1, 11]

It was found later that applying brief repeat periods 
of ischemia to remote organs, including the kidney, 
intestine and skeletal muscle, can also protect the heart 
from subsequent myocardial infarction.[16, 17, 18, 19, 
20]. This is called remote IPC and is less invasive and 
simpler to implement in clinical practice than classical 
preconditioning.[21, 22, 23]. There have been reports [24, 
25, 26, 27] on the use of remote IPC to elicite protective 
response not only in the heart, but also in other target 
organs (the brain, kidneys and lungs).

In addition, studies have demonstrated that not only 
a brief subcritical ischemic challenge, but also hypoxia, 
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hypothermia, hyperthermia, light, inhalational anesthetics 
and other chemical substances can trigger endogenous 
protection from ischemic or other damage.[28, 29, 30, 31, 
32]. Cross-preconditioning refers to prior exposure to a 
noxious stress other than ischemia that confers ischemic 
tolerance.

The mechanisms underlying preconditioning 
protective effects are numerous, intricate and still poorly 
understood. Preconditioning triggers adaptive cellular and 
tissue responses which prepare the tissue to a subsequent 
actual ischemic damaging event. Preconditioning can be 
subdivided into early and late mechanisms, depending 
on whether the effect appears immediately after the 
nonlethal stress or with a delay of some hours or days.
[1] Early protective mechanisms can be induced within 
minutes of exposure to preconditioning stimuli and are 
associated with generation of signaling molecules which 
bind to specific membrane receptors and activate a 
number of signaling intracellular responses.[1, 6, 33] Late 
protective mechanisms of preconditioning result from 
gene activation and de novo protein synthesis.[1, 6, 33] 
In addition, beneficial effects of preconditioning are due 
to the attenuation of damage-inducing processes including 
excitotoxicity, oxidative stress, metabolic dysfunction, 
inflammation, and necrotic and apoptotic cell death.[6]

The protective signals of remote preconditioning are 
transferred from distant tissues to the target organ likely 
through humoral, neuronal and immune pathways. After 
being transmitted to the target organ, these protective 
signals use a final common pathway to induce tolerance to 
damaging effects.[9]

Interestingly, numerous studies have reported on the 
activation of endogenous adaptive mechanisms (in the 
myocardium, brain and retina) by inducing brief non-
lethal episodes of ischemia or other stimuli to the target 
organ not only prior to, but also during, or even after an 
episode of sustained lethal injury - a phenomenon termed 
preconditioning, perconditioning or postconditioning, 
respectively.[8, 34, 35, 36, 37, 38, 39]

Preconditioning-induced cardiac tissue protection 
Adaptation of the myocardium to ischemia after 

ischemic preconditioning have been observed in patients 

coronary 
angioplasty.[40, 41, 42]  In patients with transient episodes 
artery bypass surgery and in the setting of 
with unstable angina and those in the setting of coronary 

of preinfarction angina, as compared with those without, 
thrombolytic therapy resulted in more rapid reperfusion 
and smaller infarcts.[43, 44] It is believed that, in this 
case, IPC is a potential protective mechanism against 
myocardial infarction.[42]

Yellon and colleagues [41] reported a study examining 
the effects of a preconditioning protocol of two cycles of 
3 min of global ischemia (induced by intermittent cross-
clamping the aorta and pacing the heart at 90 beats/min) 
followed by 2 min of reperfusion before a 10-min period 
of global ischemia and ventricular fibrillation. Changes in 

ATP content from needle biopsies of left ventricular muscle 
were used as the end point in this study. It was found that 
patients subjected to this preconditioning protocol had 
better preservation of ATP levels during the subsequent 
global ischemic period. Based on these findings, the 
authors concluded that the biochemical changes observed 
in the human hearts in response to the IPC in their study 
were almost identical to those observed in canine hearts by 
Murry and colleagues.[41] Others [45, 46, 47] confirmed 
the efficacy of IPC in the setting of coronary angioplasty. 
Some researchers [48, 49] supposed the beneficial effect 
of IPC in ischemia- and reperfusion-induced arrhythmias. 
Cohen and colleagues [50] and Sun and colleagues [51] 
reported on IPC-induced alleviation in transient coronary 
occlusion (also called myocardial stunning) in rabbits and 
pigs, respectively. Therefore, IPC may be considered as 
a powerful phenomenon that provides potent therapeutic 
myocardial protection in humans.[33]

Remote IPC has also reported to be beneficial for 
cardioprotection. Others [21, 23, 52] cardioprotective and 
prognostic effects have demonstrated of remote IPC on 
myocardial injury in patients undergoing coronary artery 
bypass graft surgery and children undergoing surgical 
repair of congenital heart defects, with improvements in 
the release of serum biomarkers of ischemic injury and 
perioperative myocardial protection. In patients undergoing 
elective open abdominal aortic aneurysm repair, remote 
IPC reduces the incidence of postoperative myocardial 
injury, myocardial infarction, and renal impairment, with 
improvements in the release of serum biomarkers of 
myocardial injury and renal function.[26] A number of 
studies [53, 54, 55, 56, 57, 58], however, have found no 
substantial difference in the release of serum biomarkers 
of ischemic injury or clinical treatment outcomes between 
patients undergoing remote IPC and controls.

Therefore, the results of clinical studies are highly 

of the ATP-sensitive potassium (KATP) channel)  has been 
sulfonylurea hypoglycemic agents (non-specific inhibitors 

variable in terms of the beneficial effects of remote IPC, 
and the mechanisms underlying the protective effects of 
remote IPC are not completely understood. Nevertheless, 
a number of factors (like administration of particular 
medications and anesthesia protocols) have been confirmed 
to have an impact on the efficacy of IPC.[46, 47, 59] 
Myocardium from diabetic patients taking long-term oral 

shown to be resistant to the protection by IPC.[60] In 
addition, the impact of the aforementioned factors has not 
always been taken into account in clinical study protocols 
and controlled, which could affect study results.[61]

Preconditioning-induced brain protection 
Moncayo and colleagues [62] found that patients with 

transient ischemic attacks (TIAs) lasting 10 to 20 minutes 
before cerebral infarction (CI) had a more favorable 
outcome than those without TIAs before CI. They suggested 
that ischemic tolerance may play a role in patients with 
ipsilateral TIAs before CI, allowing better recovery from 
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hemorrhage (aSAH) and resulted in a lower incidence of 
cerebral vasospasm and better functional outcome.

Preconditioning-induced retinal protection
The results of the studies on the mechanisms underlying 

preconditioning and adaptation to myocardial and
cerebral ischemia made it possible to hypothesize that 
the retinal neural tissue may be  preconditioned. A
number of experimental studies on the mechanisms
underlying retinal protection by preconditioning have
confirmed this hypothesis (Table 1).

In an experimental in vitro study,  Caprioli and 
colleagues [68] concluded that the neuroprotective effect 
of hyperthermia and sublethal hypoxia suggests that heat 
shock proteins confer protection against ischemic and 
excitotoxic retinal ganglion cell death. More recently, Roth 
and colleagues [69] demonstrated the capacity of brief 
preconditioning ischemic episodes to attenuate subsequent 
retinal ischemic injury in rats. Retinal ischemia for 5 
minutes constituted the preconditioning stimulus.  To assess 
the time course of preconditioning, animals underwent a 
5-minute preconditioning episode and then 60 minutes of 

ischemia 1, 24, 72, or 168 hours later; or they underwent 
a 5-minute sham experiment and 60 minutes of ischemia 
24 hours later. In contrast to the nonpreconditioned rats 
preconditioned rats had complete recovery of the a- and 
b-waves compared with preischemic baseline amplitudes, 
and ischemia-induced histologic damage was completely 
prevented when preconditioning was performed 24 or 72 
hours (but not 168 hours) before ischemia. Separation of 
preconditioning and 60 minutes of ischemia by 1 hour 
caused an even greater impairment of functional retinal 
recovery compared with that seen in sham-preconditioned 
rats.[69] Obviously, those authors observed late, but not 
early effects of IPC.

Sakamoto and colleagues [70] aimed to clarify 
whether early IPC could be observed in the rat retina by 
histological examination. Animals underwent a 5-minute 
preconditioning episode and then 60 minutes of ischemia 
5, 10, 20, 30, 40, 50 or 60 minutes later. Five minutes of 
preconditioning ischemia 20-40 minutes (but not 5, 10, 
50 or 60 minutes) before 60 min of sustained ischemia 
completely prevented the retinal tissue damage induced 
by the sustained ischemia.[70] Therefore, early protective 
effects of IPC were demonstrated in the rat retina.

Multiple mechanisms have been reported to potentially 
underlie the preconditioning-induced retinal protection 
from injury/disease including: binding of adenosine to 
its A1 and A2a receptors, activation of protein kinase C, 
induction of heat-shock protein 27 (Hsp27), upregulation 
of erythropoietin receptor (EPO-R), activation of nitric 
oxide synthase (NOS), opening of mitochondrial KATP 
channels, and inhibition of mitogen-activated protein 
kinases (MAPKs) [70-78]. Zhang and colleagues [76] used 
a rat model to investigate the effect of IPC on apoptosis 
after ischemia and some of the key proteins involved in the 
apoptotic cascade. They concluded that IPC protects the 
rat retina against ischemic injury, in part, by attenuating 
caspase activation, diminishing apoptosis-related gene 
expression and by altering protein phosphorylation. 
Studies [79] have provided evidence that hypoacetylation 
associated with ischemic injury results from the selective 
rise in histone deacetylase (HDAC)1/2 activity and that 
neuroprotection induced by IPC is mediated in part by 
suppressing HDAC activity. In addition, it was found 
[80] that the inhibitory effects of IPC on inflammatory 
leukocyte–endothelium interactions in the postischemic 
rat retina would partially contribute to the neuroprotective 
effect on the ischemic insult. The results of a study 
by Nishiyama and colleagues [81] suggested that the 
mechanism of preconditioned retinal ischemia may be 
related to retinal Müller cells which have a pivotal role 
in the maintenance of retinal homeostasis and regulate the 
glutamate/glutamine metabolic cycle. 

It is noteworthy that the protective effect of IPC is 
transient. IPC may be induced and its protective effect be 
allowed to dissipate, and then be reinduced by later repeated 
application.[71] Differences in the intensity, duration, and/
or frequency of a particular stress stimulus determine 

a subsequent ischemic stroke. More recently, Wegener and 
colleagues [63] concluded that the beneficial effect of TIAs 
on lesion size in apparent diffusion coefficient (ADC) and 
T2 suggests the existence of endogenous neuroprotection 
in the human brain.
  Chan  and  co-authors  [64]  evaluated    the  effects  of 
ischemic  preconditioning,  produced  by  2  min  proximal 
temporary  artery  occlusion  and  30  min  reperfusion,
on  brain  tissue  gases  and  acidity  during  clipping  of 
cerebral  aneurysm.  The  results  of  their  study  suggested 
that  ischemic  preconditioning  attenuates  tissue  hypoxia 
during subsequent artery occlusion, and brief occlusion of 
the proximal artery may be a simple maneuver for brain 
protection during complex cerebrovascular surgery. Others
[65]  also  suggested  that  repetitive  brief  occlusion  of  the 
proximal artery with intermittent reperfusion reduced the 
risk  of  stroke  compared  with  uninterrupted  ischemia  of 
similar duration in patients undergoing surgical repair of 
ruptured intracranial aneurysms.
  It is believed that remote IPC also has neuroprotective 
effects.  Thus,  Meng  and  colleagues  [66]  provided  a
  proof-of-concept  that   brief   repetitive   bilateral  arm 
ischemic  preconditioning  may  be  an  effective  way  to 
improve  cerebral  perfusion  and  reduce  recurrent  strokes 
in  patients  with  symptomatic  atherosclerotic  intracranial 
arterial stenosis. In a study by Sales and colleagues [67],
remote  IPC  in  patients  with  brain  tumors  undergoing 
elective surgical resection was induced by inflating a blood 
pressure  cuff  placed  on  the  upper  arm  three  times  for  5 
min at 200 mmHg in the treatment group after induction 
of  anesthesia.  The  authors  concluded  that  application 
of  remote  IPC  was  associated  with  reduced  incidence 
of  postoperative  ischemic  tissue  damage  in  patients 
undergoing  elective  brain  tumor  surgery.  Sangeetha  and 
colleagues  [25]  concluded  that  remote  IPC  was  feasible 
and  safe  in  patients  with  aneurysmal  subarachnoid
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Table 1. Experimental studies of preconditioning-based retinal protection

Authors Year Animals
Type of 

preconditioning 
stimuli

Time between 
preconditioning 

and insult

Damaging 
factor Effect revealed

Faktorovich 
E.G., et al86 1992 rats

Needle 
introduced 
subretinally

48 hours
light, 7 days,
1300-1800 

lux

Mechanical preconditioning stimulus 
causes a decrease in the amount of 
phototoxic injury to photoreceptors 

Roth S., 
et al69 1998 rats 5-min ischemia 1 hour 60-min 

ischemia

Deterioration in the structure and 
electrical function of the retina 
following ischemic injury

5-min ischemia 24, 72 hours 60-min 
ischemia

Complete functional and histologic 
protection against ischemic damage in 
the retina by previous preconditioning 
with nondamaging ischemia

5-min ischemia 168 hours 60-min 
ischemia

No functional and histologic protection 
against ischemic damage

Liu C., et al89 1998 rats Light, 12 hours,
1400 lux 48 hours light, 7 days,

1400 lux

Preconditioning with light evokes 
a protective response against light 
damage in the retina

Li B., et al71 1999 rats 5-min ischemia 24 hours 60-min 
ischemia

The neuroprotective effects of IPC 
in the retina are lost over time but 
may be reinduced by subsequent 
application of the IPC stimulus.  The 
role of adenosine as a mediator of IPC 
was confirmed.

Lin J., et al82 1999 rats 5-min ischemia 24 hours 30-min 
ischemia

Prevention of post-ischemic retinal 
hypoperfusion and complete recovery 
of retinal electrical function 

5-min ischemia 24 hours 60-min 
ischemia

Prevention of post-ischemic retinal 
hypoperfusion

5-min ischemia 24 hours 75-min 
ischemia Post-ischemic retinal hypoperfusion

Nishiyama T., 
et al81 2000 rats 5-min ischemia 24 hours 60-min 

ischemia
Role of Müller cells in IPC-induced 
protection was demonstrated

Nonaka A., 
et al80 2001 rats 5-min ischemia 24 hours 60-min 

ischemia

IPC inhibits inflammatory leukocyte–
endothelium interactions in the 
postischemic rat retina 

Zhang C., 
et al76 2002 rats 8-min ischemia 24 hours 45-min 

ischemia
IPC attenuates apoptotic cell death in 
the rat retina

Toprak A.B., 
et al112 2002 rats 5-min ischemia 24 hours 60-min 

ischemia
IPC protects retinal structure from 
ischemic damage 

Casson R.J., 
et al83 2003 rats 5-min ischemia 24 hours

light, 48 
hours,

2000 lux

IPC protects photoreceptors against 
light-induced injury

Sakamoto K., 
et al70 2004 rats 5-min ischemia 5 and 10 min 60-min 

ischemia
Deterioration of retinal structure 
following ischemia

5-min ischemia 20, 30, and 40 
min

60-min 
ischemia

Protective effect of early IPC in the 
retina. IPC protects retinal structure 
from ischemic damage.

5-min ischemia 50 and 60 min 60-min 
ischemia

Deterioration of retinal structure 
following ischemia

Ozbay D., 
et al111 2004 rats 5-min ischemia 48 hours 30-min 

ischemia

Retinal sections from rats in the IPC 
group showed a well-preserved retinal 
structure
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whether that stimulus is too weak to elicit any response, 
of sufficient magnitude to serve as a preconditioning 
trigger, or too robust and therefore harmful.[6] One of the 
disadvantages of IPC, which cannot be ignored, is that IPC 
is capable of leading to serious damage with only small 
changes in the timing, durations, and location of sublethal 
ischemic insults.[9] In addition, IPC’s protective effect 
depends on the duration of a subsequent ischemic episode.
[82]

An experimental study by Casson and colleagues [83] 
have demonstrated that IPC can protect the retina not only 
against ischemic injury, but also against phototoxic
injury. They concluded that IPC upregulates basic
fibroblast growth factor (bFGF), glial fibrillary acidic
protein (GFAP) and the apoptosis regulator Bcl-2, and
these factors may be involved in the protective response.

Retinal protective effect can be also triggered by 
remote IPC. In a rat study by Brandli and colleagues [84], 
repeated episodes of ischemia and reperfusion in one hind 
limb of rats were applied to the retina. Remote ischemic 
preconditioning was found to protect the retina against 
phototoxic injury, with preservation of retinal electrical 
activity and histological structure and a reduction in 
photoreceptor apoptosis caused by light damage. Others 
have reported evidence of the potential to use cross-
preconditioning stimuli to protect retinal cells against 
ischemic and phototoxic injury. It has been reported 
[85, 86] that mechanical trauma of the retina may act 

as a preconditioning stimulus and create conditions for 
subsequent photoreceptor protection from phototoxic 
injury. Findings of a study by Wen and colleagues [87] 
strongly suggested that increases in endogenous basic 
fibroblast growth factor (bFGF) and/or ciliary neurotrophic 
factor (CNTF) play key roles in mechanical injury-induced 
photoreceptor rescue.

Salido and colleagues [88] investigated hypothermia 
as a potential preconditioning stimulus to protect the rat 
retina from ischemia/reperfusion damage. Twenty-four 
hours before ischemia, animals were exposed to a brief 
period of global or ocular hypothermia (i.e. hypothermic 
preconditioning, HPC). Fourteen days after ischemia, 
they were subjected to electroretinography (ERG) and 
histological analysis. There was ERG evidence that global 
or ocular HPC afforded significant functional protection 
in eyes exposed to ischemia/reperfusion injury. Global or 
ocular HPC significantly preserved retinal structure and 
ganglion cell count. The authors [88] gave their reasons 
for proposing a glutamate-dependent mechanism of HPC-
induced retinal neuroprotection from ischemia, with retinal 
Müller cells being a putative target for the protective effect 
of HPC on ischemia/reperfusion damage. Therefore, when 
applied systemically to the whole body or when applied 
locally, preconditioning stimuli can activate endogenous 
retinal protection.[8]

Preconditioning with bright light can be used to 
attenuate the consequences of phototoxic retinal injury. 

Table 1 (continuation). Experimental studies of preconditioning-based retinal protection

Authors Year Animals
Type of 

preconditioning 
stimuli

Time between 
preconditioning 

and insult

Damaging 
factor Effect revealed

Dreixler J.C., 
et al77 2009 rats 8-min ischemia 24 hours ischemia

The role of EPO-R in IPC-induced 
retinal protection from ischemia was 
determined

Albarracin R., 
et al90 2011 rats

Light 670 nm, 
60 mW/cm2

3 min for 5 days 
24 hours

light, 
24 hours,
1000 lux

Preconditioning with 
photobiomodulation protects retinal 
structure and function from phototoxic 
damage 

Zhu Y., et al98 2012 mice
Hypoxia with

11% О2, 2 hours 
for 2 weeks

72 hours
Intraocular 

hypertension,
3-10 weeks

Hypoxic preconditioning protects 
retinal ganglion cells from apoptosis 
and reduces axonal damage 

Salido E.M., 
et al88 2013 rats 20-min 

hypothermia 24 hours 40-min 
ischemia

Hypothermic preconditioning protects 
retinal structure and function from 
ischemic damage

Fan J., 
et al79 2016 rats 5-min ischemia 24 hours 45-min 

ischemia

Retinal neuroprotection induced by 
IPC is mediated in part by suppressing 
HDAC activity.

Brandli A., 
et al84 2016 rats 5 min×2 remote 

ischemia 15-30 min light, 24 hours,
1000 lux

Remote IPC protects retinal 
photoreceptors against bright light–
induced photoreceptor degeneration

Iliescu D.A., 
et al96 2018 rats 60-min 

sevoflurane 2% 1 hour light, 60 min,
20000 lux

Sevoflurane preconditioning protects 
the structure and function of retinal 
photoreceptors and bipolar cells from 
the damaging effect of photostress
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Liu and colleagues [89] used a preconditioning paradigm 
to show that rats preconditioned with fluorescent light 
became resistant to subsequent light damage. They found 
that preconditioning induced an increase in bFGF and 
CNTF, stimulated the phosphorylation of extracellular 
signal-regulated protein kinases (Erks), and reduced the 
extent of retinal structural damage. They also suggested an 
important role of Müller cells in preconditioning-induced 
photoreceptor protection. Albarracin and colleagues 
[90, 91] reported that 670-nm light-emitting-diode 
photobiomodulation is protective against bright-light–
induced retinal degeneration in rats. Treatment with 670-
nm light led to reductions in (a) the extent of phototoxic 
injury to photoreceptors, retinal pigment epithelial and 
Müller cells, and (b) the levels of markers of inflammatory 
stress in the retina.

Pharmacological preconditioning (e.g. with inhalation 
anesthetics) can be used to protect the retina against 
phototoxic damage. Some inhalation anesthetics have 
been found to improve the preconditioning effect and to be 
independently capable of protecting the tissues of the heart, 
kidneys and other organs by reducing ischemia/reperfusion 
damage and inducing anti-inflammatory, anti-necrotic 
and anti-apoptotic effects.[2, 57, 93-95] There have been 
reports on the protective effect of inhalational anesthetic 
preconditioning against light-induced injury. It is believed 
that inhalation anesthetics provide neuroprotection by 
attenuating neuronal excitotoxicity, inflammation and 
apoptocis. Iliescu and colleagues [96] explored the effect 
of sevoflurane anesthetic preconditioning on a model of 
light-induced retinal degeneration in diabetic rats.  Results 
showed that sevoflurane has a protective effect on light-
induced neuroretinal degeneration proved by significantly 
less variations of the ERG before and after photostress.

The results of mouse studies by Zhu and colleagues [97, 
98] described a novel form of sustained retinal ischemic 
tolerance, wherein endogenous adaptive responses 
triggered by repeated episodes of sublethal hypoxia afford 
protection against apoptosis of retinal ganglion cells 
and axonal injury many weeks after the preconditioning 
stimulus. The authors [97, 98] suppose that the ability to 
induce such a sustained, cell death–resistant phenotype 
may be therapeutically advantageous, not only for 
protecting the vision of glaucoma patients, but for saving 
neurons in other neurodegenerative diseases as well.

Experimental studies have demonstrated retinal 
protective ability of cross-preconditioning stimuli in the 
form of hyperthermia [99], hyperbatic oxygenation [100], 
oxidative stress [101], and aerobic exercise [102].

Effective preconditioning stimuli are numerous and 
diverse, suggesting that a downstream convergence of 
signalling pathways promotes this protective response.
[6] Despite the amount of knowledge available 
on preconditioning, it is still unknown whether 
neuroprotective effects from various protective response-
inducing stimuli may be potentiated.

The success of laboratory studies in the field of retinal 
conditioning have not been confirmed by clinical trials, 
and the beneficial effects of preconditioning are not used 
in the practice of ophthalmology.[8] Cardiac and cerebral 
conditioning, however, are used in cardiac surgery 
and neurosurgery to protect cardiac tissue and brain, 
respectively, from ischemic injury.[23, 26, 66, 67, 103] 
Hypothetically, vitreoretinal surgery may be a promising 
field for further research on the use of preconditioning for 
retinal protection. During vitrectomy, insufficient blood 
pressure and/or elevated intraocular pressure (IOP) result 
in decreased perfusion pressure, leading to additional 
perioperative ischemic retinal and optic nerve injury.[104] 
In addition, light from a fiberoptic endoilluminator used in 
vitrectomy can cause retinal phototoxic damage.[105] It is 
not uncommon that vitrectomy procedures take a long time 
(120 minutes or longer).[106, 107] Therefore, it is supposed 
that the use of some variants of cross-preconditioning 
(e.g., in the form of photobiomodulation or local ocular 
hypothermia) before surgery would contribute to induction 
of neuroprotective mechanisms and create conditions 
for retinal protection against perioperative ischemic and 
phototoxic injury.[108-110]

It is, however, obvious that a set of biochemical and 
biophysical processes taking place in the retina of eyes 
with a vitreoretinal disease (especially under conditions of 
surgery) is rather diverse, and one type of preconditioning 
strategy may not induce enough retinal protection. It is 
likely that in patients having a vitreoretinal surgery it 
would be reasonable to combine different available retinal 
protection approaches while avoiding the use of factors 
that can deteriorate this protection (e.g., intraoperative 
elevated IOP, deep hypothermia, and/or phototoxic
illumination sources).Conclusion

Short-time application of different types of 
subthreshold preconditioning stimuli capable of mobilizing 
intrinsic protective mechanisms in tissues (ischemia, 
photobiomodulation, hypothermia, etc.) can improve 
the resistance of retinal cells to ischemic or phototoxic 
injury. Although the protective effects of preconditioning 
have been not realized in clinical ophthalmology, the 
considerable experience accumulated in experimental 
studies of different types of retinal preconditioning, and the 
results of clinical applications of preconditioning in heart 
surgery and neurosurgery allow us to suppose that this 
approach to retinal protection may be promising. Further 
laboratory and clinical studies are required to allow for the 
application of the beneficial effects of preconditioning for 
additional retinal protection prior to vitreoretinal surgery. 
With this in mind, it is reasonable to take notice of easy-
to-use types of preconditioning (like photobiomodulation 
or local hypothermia) which could be used within hours or 
days prior to planned surgery.
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