Current strategy of treatment for neovascular glaucoma secondary to retinal ischemic lesions


  • Olha Guzun SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"
  • Oleg Zadorozhnyy SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"
  • Chargui Wael SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"



neovascular glaucoma, secondary glaucoma, intraocular pressure, neovascularization of the angle, rubeosis iridis


The paper considers current views on the treatment of patients with neovascular glaucoma. Numerous treatments (ocular hypotensive medications, laser and surgical techniques and their combinations) have been attempted for intraocular pressure (IOP) control in NVG, but no consensus exists regarding the most effective medication or procedure. NVG requires emergency eye care, and its treatment is focused mostly on combating neovascularization and stabilizing the IOP. An advanced standardized multidisciplinary strategy for the management of patients with NVG is warranted to improve treatment outcomes for these patients.
In patients with NVG, it is reasonable to use treatments aimed at (1) compensating for the underlying disease, (2) reducing retinal ischemia and neovascularization (such as panretinal laser photocoagulation and/ or anti-vascular endothelial growth factor (VEGF) therapy) and (3) lowering an abruptly elevated IOP (such as topical and systemic medical treatment and surgical and cyclodestructive procedures).


Ramji S, Nagi G, Ansari AS, Kailani O. A systematic review and meta-analysis of randomised controlled trials in the management of neovascular glaucoma: absence of consensus and variability in practice. Graefes Arch Clin Exp Ophthalmol. 2023;261(2):477-501.

Senthil S, Chary R, Ali MH, Cherukuri JR, Rani PK, Krishnamurthy R, et al. Trabeculectomy for neovascular glaucoma in proliferative diabetic retinopathy, central retinal vein occlusion, and ocular ischemic syndrome: Surgical outcomes and prognostic factors for failure. Indian J Ophthalmol. 2021;69(11):3341-8.

Asif H, Si Z, Quan S, Amin P, Dao D, Shaw L, et al. Neovascular Glaucoma from Ocular Ischemic Syndrome Treated with Serial Monthly Intravitreal Bevacizumab and Panretinal Photocoagulation: A Case Report. Case Rep Ophthalmol Med. 2022;2022:4959522.

Havens SJ, Gulati V. Neovascular glaucoma. Dev Ophthalmol. 2016;55:196-204.

Tang Y, Cheng Y, Wang S, Wang Y, Liu P, Wu H. Review: The Development of Risk Factors and Cytokines in Retinal Vein Occlusion. Front Med (Lausanne). 2022 Jun 15;9:910600.

Perais J, Agarwal R, Evans JR, Loveman E, Colquitt JL, Owens D, Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy. Cochrane Database Syst Rev. 2023;2:CD013775.

Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants (Basel). 2023;12(8):1649.

Progression of retinopathy with intensive versus conventional treatment in the diabetes control and complications trial. Diabetes control and complications trial research group. Ophthalmology. 1995;102(4):647-61.

Łazicka-Gałecka M, Guszkowska M, Gałecki T, Dziedziak J, Kamińska A, Szaflik J. Epidemiology, pathophysiology and diagnosis of uveitic glaucoma and ocular hypertension secondary to uveitis. Klinika Oczna / Acta Ophthalmologica Polonica. 2023;125(1):7-12.

European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol. 2021;105(Suppl 1):1-169.

Tang Y, Shi Y, Fan Z. The mechanism and therapeutic strategies for neovascular glaucoma secondary to diabetic retinopathy. Front Endocrinol (Lausanne). 2023;14:1102361.

Abcouwer SF. Müller cell-microglia cross talk drives neuroinflammation in diabetic retinopathy. Diabetes. 2017;66(2):261-263.

Zhang A, Ning L, Han J, Ma Y, Ma Y, Cao W, et al. Neutrophil-to-lymphocyte ratio as a potential biomarker of neovascular glaucoma. Ocul Immunol Inflammation. 2021;29(2):417-24.

Liu Z, Shi H, Xu J, Yang Q, Ma Q, Mao X, et al. Single-cell transcriptome analyses reveal microglia types associated with proliferative retinopathy. JCI Insight 2022;7:e160940.

Wang JH, Lin FL, Chen J, Zhu L, Chuang YF, Tu L, et al. TAK1 blockade as a therapy for retinal neovascularization. Pharmacol Res. 2023;187:106617.

Fu X, Feng S, Qin H, Yan L, Zheng C, Yao K. Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Front Mol Neurosci. 2023;23;16:1100254.

Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018; 19(6):1816.

Guzun OV, Velichko LN, Bogdanova AV, Zadorozhnyy OS, Korol AR. Dynamics of the molecular marker of intercellular adhesion (ICAM-1) in patients with neovascular glaucoma after transscleral laser cyclocoagulation. 10-th World glaucoma congress. June 28-July 1, 2023, Rome, Italy. Abstract book. PLB-013 - P.431.

Khodeiry MM, Lauter AJ, Sayed MS, Han Y, Lee RK. Primary slow-coagulation transscleral cyclophotocoagulation laser treatment for medically recalcitrant neovascular glaucoma. Br J Ophthalmol. 2023;107(5):671-676.

Khodeiry MM, Liu X, Lee RK. Clinical outcomes of slow-coagulation continuous-wave transscleral cyclophotocoagulation laser for treatment of glaucoma. Curr Opin Ophthalmol. 2022;33(3):237-242.

Palfi Salavat MC, Șeclăman EP, Barac R, Ungureanu E, Iorgu G, Artamonov A, et al. The role of Anti-VEGF agents in treatment of neovascular glaucoma. Rom J Ophthalmol. 2022;66(3):209-213.

Simha A, Aziz K, Braganza A, Abraham L, Samuel P, Lindsley KB. Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev. 2020;2(2):CD007920.

Rittiphairoj T, Roberti G, Michelessi M. Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev. 2023;4(4):CD007920.

Lucatto LFA, Magalhães-Junior O, Prazeres JMB, Ferreira AM, Oliveira RA, Moraes NS, et al. Incidence of anterior segment neovascularization during intravitreal treatment for macular edema secondary to central retinal vein occlusion. Arq Bras Oftalmol. 2017;80(2):97-103.

Li J, Zhang S, Hou B. Outcomes of vitrectomy, complete pan-retinal photocoagulation, and endoscopic cyclophotocoagulation surgery after anti-VEGF treatment in neovascular glaucoma. Adv Ophthalmol Pract Res. 2023;3(3):112-118.

Usui-Ouchi A, Friedlander M. Anti-VEGF therapy: higher potency and long-lasting antagonism are not necessarily better. J Clin Invest. 2019;129(8):3032-3034.

Rani PK, Sen P, Sahoo NK, Senthil S, et al. Outcomes of neovascular glaucoma in eyes presenting with moderate to good visual potential. Int Ophthalmol. 2021;41:2359-68.

Choy B, Lai J, Yeung J, Chan J. Randomized comparative trial of diode laser transscleral cyclophotocoagulation versus Ahmed glaucoma valve for neovascular glaucoma in Chinese - a pilot study. Clin Ophthalmol. 2018;12:2545-2552.

Wagdy FM, Zaky AG. Comparison between the express implant and transscleral diode laser in neovascular glaucoma. J Ophthalmol. 2020;107:1-6.

Zhou X, Chen J, Luo W, Du Y. Short-Term Outcomes of Trabeculectomy With or Without Anti-VEGF in Patients With Neovascular Glaucoma: A Systematic Review and Meta-Analysis. Transl Vis Sci Technol. 2023;12(9):12.

Takihara Y, Inatani M, Fukushima M, Iwao K, Iwao M, Tanihara H. Trabeculectomy with mitomycin-C for neovascular glaucoma: Prognostic factors for surgical failure. Am J Ophthalmol. 2009;147:912-8. e911.

Higashide T, Ohkubo S, Sugiyama K. Long-term outcomes and prognostic factors of trabeculectomy following intraocular bevacizumab injection for neovascular glaucoma. PLoS One. 2015;10:e0135766.

Shchomak Z, Cordeiro Sousa D, Leal I, Abegão Pinto L. Surgical treatment of neovascular glaucoma: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2019;257(6):1079-1089.

El-Saied HMA, Abdelhakim MASE. Various modalities for management of secondary angle closure neovascular glaucoma in diabetic eyes: 1-year comparative study. Int Ophthalmol. 2021;41(4):1179-1190.

Lin P, Zhao Q, He J, Fan W, He W, Lai M. Comparisons of the short-term effectiveness and safety of surgical treatment for neovascular glaucoma: a systematic review and network meta-analysis. BMJ Open. 2022;12(5):e051794.

Ohnishi Y, Ishibashi T, Sagawa T. Fluorescein gonioangiography in diabetic neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 1994; 232:199-204.

Sood G, Siddik AB. Ocular Ischemic Syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; August 13, 2023.

Zadorozhnyy OS, Savin NV, Buiko AS. Improving the technique for controlled cryogenic destruction of conjunctival tumors located in the projection of the ciliary body onto the sclera: A preliminary report. J Ophthalmol (Ukraine). 2018;5:60-65.

Benson MT, Nelson ME. Cyclocryotherapy: a review of cases over a 10-year period. Br J Ophthalmol. 1990;74(2):103-5.

Ruixue W, Tao W, Ning L. A Comparative Study between Ultrasound Cycloplasty and Cyclocryotherapy for the Treatment of Neovascular Glaucoma. J Ophthalmol. 2020;2020:4016536.

Goldenberg-Cohen N, Bahar I, Ostashinski M, Lusky M, Weinberger D, Gaton DD. Cyclocryotherapy versus transscleral diode laser cyclophotocoagulation for uncontrolled intraocular pressure. Ophthalmic Surg Lasers Imaging. 2005;36(4):272-9.

Delgado MF, Dickens CJ, Iwach AG, Novack GD, Nychka DS, Wong PC, et al. Long-term results of noncontact neodymium:yttrium-aluminum-garnet cyclophotocoagulation in neovascular glaucoma. Ophthalmology. 2003;110(5):895-899.

Denis P, Aptel F, Rouland JF, Nordmann JP, Lachkar Y, Renard JP, et al. Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: a 12-month multicenter study. Invest Ophthalmol Vis Sci. 2015;56(2):1089-1096.

Dastiridou AI, Katsanos A, Denis P, Francis BA, Mikropoulos DG, Teus MA, et al. Cyclodestructive Procedures in Glaucoma: A Review of Current and Emerging Options. Adv Ther. 2018;35(12):2103-2127.

Billings B, Fletcher DB, Weaver AC, Alkaelani MT, Fallgatter K, Daneshvar R. Scleral burn and perforation following transscleral cyclophotocoagulation. Am J Ophthalmol Case Rep. 2023;32:101893.

Rotchford AP, Jayasawal R, Madhusudhan S, Ho S, King AJ, Vernon SA. Transscleral diode laser cycloablation in patients with good vision. Br J Ophthalmol. 2010;94(9):1180-1183.

Shalaby WS, Ganjei AY, Wogu B, Myers JS, Moster MR, Razeghinejad R, et al. Outcomes of Ahmed glaucoma valve and transscleral cyclophotocoagulation in neovascular glaucoma. Indian J Ophthalmol. 2022;70(4):1253-1259.

Ford RL, Knight OJ, Klifto MR, Zhang AY, Wiesen CA, Fleischman D. A Pilot Study Assessing Treatment Outcomes in Neovascular Glaucoma Using Ahmed Glaucoma Valve with and without Cyclophotocoagulation. J Curr Glaucoma Pract. 2022;16(1):4-10.

Zadorozhnyy O, Alibet Y, Kryvoruchko A, Levytska G, Pasyechnikova N. Dimensions of ciliary body structures in various axial lengths in patients with rhegmatogenous retinal detachment. J Ophthalmol (Ukraine). 2017;6:32-35.

Zadorozhnyy O, Guzun O, Kustryn T, Nasinnyk I, Chechin P, Korol A. Targeted transscleral laser photocoagulation of the ciliary body in patients with neovascular glaucoma. J Ophthalmol (Ukraine). 2019;4:3-7.

Brancato R., Leoni G., Trabucchi G., Cappellini A. Histopathology of continuous wave neodymium:yttrium aluminum garnet and diode laser contact transscleral lesions in rabbit ciliary body. A comparative study. Invest Ophthalmol Vis Sci. 2004;32:1586-92.

McKelvie PA, Walland MJ. Pathology of cyclodiode laser: a series of nine enucleated eyes. Br J Ophthalmol. 2002;86(4):381-386.

Chechyn PP, Vyt VV, Huzun OV. Histomorphological changes in the sclera and ciliary body after transscleral contact-compression neodymium laser coagulation. J Ophthalmol (Ukraine). 2018;2:41-44. in Russian.

Guzun O, Zadorozhnyy O, Artyomov А, Elagina V. Histological Changes in the Intraocular Structures of an Enucleated Eye with Uveal Melanoma and Secondary Painful Neovascular Glaucoma after Palliative Diode Transscleral Cyclophotocoagulation (Clinical Case). Oftalmologija. Vostochnaja Evropa. 2021;3(11):368-377.

Moussa К, Feinstein M, Pekmezci M. Histologic Changes Following Continuous Wave and Micropulse Transscleral Cyclophotocoagulation: A Randomized Comparative Study. Transl Vis Sci Technol. 2020;9(5):22.

Gupta S, Chang EK, Chachanidze M, Hall N, Neeson C, Klug E, et al. Outcomes of a combination of augmented MicroPulse and limited Continuous Wave Cyclophotocoagulation in patients with refractory glaucoma. Graefes Arch Clin Exp Ophthalmol. 2022;260(5):1583-1592.

Koraszewska-Matuszewska B, Leszczyński R, Samochowiec-Donocik E, Nawrocka L. Cyclodestructive procedures in secondary glaucoma in children. Klin Oczna. 2004;106(1-2 Suppl):199-200.



How to Cite

Guzun O, Zadorozhnyy O, Wael C. Current strategy of treatment for neovascular glaucoma secondary to retinal ischemic lesions. J.ophthalmol. (Ukraine) [Internet]. 2024 May 1 [cited 2024 May 29];(2):32-9. Available from:

Most read articles by the same author(s)