Current strategy of treatment for neovascular glaucoma secondary to retinal ischemic lesions

Authors

  • Olha Guzun SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine" https://orcid.org/0009-0003-6873-8503
  • Oleg Zadorozhnyy SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine" https://orcid.org/0000-0003-0125-2456
  • Chargui Wael SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"

DOI:

https://doi.org/10.31288/oftalmolzh202423239

Keywords:

neovascular glaucoma, secondary glaucoma, intraocular pressure, neovascularization of the angle, rubeosis iridis

Abstract

The paper considers current views on the treatment of patients with neovascular glaucoma. Numerous treatments (ocular hypotensive medications, laser and surgical techniques and their combinations) have been attempted for intraocular pressure (IOP) control in NVG, but no consensus exists regarding the most effective medication or procedure. NVG requires emergency eye care, and its treatment is focused mostly on combating neovascularization and stabilizing the IOP. An advanced standardized multidisciplinary strategy for the management of patients with NVG is warranted to improve treatment outcomes for these patients.
In patients with NVG, it is reasonable to use treatments aimed at (1) compensating for the underlying disease, (2) reducing retinal ischemia and neovascularization (such as panretinal laser photocoagulation and/ or anti-vascular endothelial growth factor (VEGF) therapy) and (3) lowering an abruptly elevated IOP (such as topical and systemic medical treatment and surgical and cyclodestructive procedures).

References

Ramji S, Nagi G, Ansari AS, Kailani O. A systematic review and meta-analysis of randomised controlled trials in the management of neovascular glaucoma: absence of consensus and variability in practice. Graefes Arch Clin Exp Ophthalmol. 2023;261(2):477-501. https://doi.org/10.1007/s00417-022-05785-5

Senthil S, Chary R, Ali MH, Cherukuri JR, Rani PK, Krishnamurthy R, et al. Trabeculectomy for neovascular glaucoma in proliferative diabetic retinopathy, central retinal vein occlusion, and ocular ischemic syndrome: Surgical outcomes and prognostic factors for failure. Indian J Ophthalmol. 2021;69(11):3341-8. https://doi.org/10.4103/ijo.IJO_1516_21

Asif H, Si Z, Quan S, Amin P, Dao D, Shaw L, et al. Neovascular Glaucoma from Ocular Ischemic Syndrome Treated with Serial Monthly Intravitreal Bevacizumab and Panretinal Photocoagulation: A Case Report. Case Rep Ophthalmol Med. 2022;2022:4959522. https://doi.org/10.1155/2022/4959522

Havens SJ, Gulati V. Neovascular glaucoma. Dev Ophthalmol. 2016;55:196-204. https://doi.org/10.1159/000431196

Tang Y, Cheng Y, Wang S, Wang Y, Liu P, Wu H. Review: The Development of Risk Factors and Cytokines in Retinal Vein Occlusion. Front Med (Lausanne). 2022 Jun 15;9:910600. https://doi.org/10.3389/fmed.2022.910600

Perais J, Agarwal R, Evans JR, Loveman E, Colquitt JL, Owens D, Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy. Cochrane Database Syst Rev. 2023;2:CD013775. https://doi.org/10.1002/14651858.CD013775.pub2

Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants (Basel). 2023;12(8):1649. https://doi.org/10.3390/antiox12081649

Progression of retinopathy with intensive versus conventional treatment in the diabetes control and complications trial. Diabetes control and complications trial research group. Ophthalmology. 1995;102(4):647-61. https://doi.org/10.1016/S0161-6420(95)30973-6

Łazicka-Gałecka M, Guszkowska M, Gałecki T, Dziedziak J, Kamińska A, Szaflik J. Epidemiology, pathophysiology and diagnosis of uveitic glaucoma and ocular hypertension secondary to uveitis. Klinika Oczna / Acta Ophthalmologica Polonica. 2023;125(1):7-12. https://doi.org/10.5114/ko.2023.126355

European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol. 2021;105(Suppl 1):1-169. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines

Tang Y, Shi Y, Fan Z. The mechanism and therapeutic strategies for neovascular glaucoma secondary to diabetic retinopathy. Front Endocrinol (Lausanne). 2023;14:1102361. https://doi.org/10.3389/fendo.2023.1102361

Abcouwer SF. Müller cell-microglia cross talk drives neuroinflammation in diabetic retinopathy. Diabetes. 2017;66(2):261-263. https://doi.org/10.2337/dbi16-0047

Zhang A, Ning L, Han J, Ma Y, Ma Y, Cao W, et al. Neutrophil-to-lymphocyte ratio as a potential biomarker of neovascular glaucoma. Ocul Immunol Inflammation. 2021;29(2):417-24. https://doi.org/10.1080/09273948.2019.1677916

Liu Z, Shi H, Xu J, Yang Q, Ma Q, Mao X, et al. Single-cell transcriptome analyses reveal microglia types associated with proliferative retinopathy. JCI Insight 2022;7:e160940. https://doi.org/10.1172/jci.insight.160940

Wang JH, Lin FL, Chen J, Zhu L, Chuang YF, Tu L, et al. TAK1 blockade as a therapy for retinal neovascularization. Pharmacol Res. 2023;187:106617. https://doi.org/10.1016/j.phrs.2022.106617

Fu X, Feng S, Qin H, Yan L, Zheng C, Yao K. Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Front Mol Neurosci. 2023;23;16:1100254. https://doi.org/10.3389/fnmol.2023.1100254

Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018; 19(6):1816. https://doi.org/10.3390/ijms19061816

Guzun OV, Velichko LN, Bogdanova AV, Zadorozhnyy OS, Korol AR. Dynamics of the molecular marker of intercellular adhesion (ICAM-1) in patients with neovascular glaucoma after transscleral laser cyclocoagulation. 10-th World glaucoma congress. June 28-July 1, 2023, Rome, Italy. Abstract book. PLB-013 - P.431.

Khodeiry MM, Lauter AJ, Sayed MS, Han Y, Lee RK. Primary slow-coagulation transscleral cyclophotocoagulation laser treatment for medically recalcitrant neovascular glaucoma. Br J Ophthalmol. 2023;107(5):671-676. https://doi.org/10.1136/bjophthalmol-2021-319757

Khodeiry MM, Liu X, Lee RK. Clinical outcomes of slow-coagulation continuous-wave transscleral cyclophotocoagulation laser for treatment of glaucoma. Curr Opin Ophthalmol. 2022;33(3):237-242. https://doi.org/10.1097/ICU.0000000000000837

Palfi Salavat MC, Șeclăman EP, Barac R, Ungureanu E, Iorgu G, Artamonov A, et al. The role of Anti-VEGF agents in treatment of neovascular glaucoma. Rom J Ophthalmol. 2022;66(3):209-213. https://doi.org/10.22336/rjo.2022.41

Simha A, Aziz K, Braganza A, Abraham L, Samuel P, Lindsley KB. Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev. 2020;2(2):CD007920. https://doi.org/10.1002/14651858.CD007920.pub3

Rittiphairoj T, Roberti G, Michelessi M. Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev. 2023;4(4):CD007920. https://doi.org/10.1002/14651858.CD007920.pub4

Lucatto LFA, Magalhães-Junior O, Prazeres JMB, Ferreira AM, Oliveira RA, Moraes NS, et al. Incidence of anterior segment neovascularization during intravitreal treatment for macular edema secondary to central retinal vein occlusion. Arq Bras Oftalmol. 2017;80(2):97-103. https://doi.org/10.5935/0004-2749.20170024

Li J, Zhang S, Hou B. Outcomes of vitrectomy, complete pan-retinal photocoagulation, and endoscopic cyclophotocoagulation surgery after anti-VEGF treatment in neovascular glaucoma. Adv Ophthalmol Pract Res. 2023;3(3):112-118. https://doi.org/10.1016/j.aopr.2023.05.001

Usui-Ouchi A, Friedlander M. Anti-VEGF therapy: higher potency and long-lasting antagonism are not necessarily better. J Clin Invest. 2019;129(8):3032-3034. https://doi.org/10.1172/JCI129862

Rani PK, Sen P, Sahoo NK, Senthil S, et al. Outcomes of neovascular glaucoma in eyes presenting with moderate to good visual potential. Int Ophthalmol. 2021;41:2359-68. https://doi.org/10.1007/s10792-021-01789-y

Choy B, Lai J, Yeung J, Chan J. Randomized comparative trial of diode laser transscleral cyclophotocoagulation versus Ahmed glaucoma valve for neovascular glaucoma in Chinese - a pilot study. Clin Ophthalmol. 2018;12:2545-2552. https://doi.org/10.2147/OPTH.S188999

Wagdy FM, Zaky AG. Comparison between the express implant and transscleral diode laser in neovascular glaucoma. J Ophthalmol. 2020;107:1-6. https://doi.org/10.1155/2020/3781249

Zhou X, Chen J, Luo W, Du Y. Short-Term Outcomes of Trabeculectomy With or Without Anti-VEGF in Patients With Neovascular Glaucoma: A Systematic Review and Meta-Analysis. Transl Vis Sci Technol. 2023;12(9):12. https://doi.org/10.1167/tvst.12.9.12

Takihara Y, Inatani M, Fukushima M, Iwao K, Iwao M, Tanihara H. Trabeculectomy with mitomycin-C for neovascular glaucoma: Prognostic factors for surgical failure. Am J Ophthalmol. 2009;147:912-8. e911. https://doi.org/10.1016/j.ajo.2008.11.015

Higashide T, Ohkubo S, Sugiyama K. Long-term outcomes and prognostic factors of trabeculectomy following intraocular bevacizumab injection for neovascular glaucoma. PLoS One. 2015;10:e0135766. https://doi.org/10.1371/journal.pone.0135766

Shchomak Z, Cordeiro Sousa D, Leal I, Abegão Pinto L. Surgical treatment of neovascular glaucoma: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2019;257(6):1079-1089. https://doi.org/10.1007/s00417-019-04256-8

El-Saied HMA, Abdelhakim MASE. Various modalities for management of secondary angle closure neovascular glaucoma in diabetic eyes: 1-year comparative study. Int Ophthalmol. 2021;41(4):1179-1190. https://doi.org/10.1007/s10792-020-01673-1

Lin P, Zhao Q, He J, Fan W, He W, Lai M. Comparisons of the short-term effectiveness and safety of surgical treatment for neovascular glaucoma: a systematic review and network meta-analysis. BMJ Open. 2022;12(5):e051794. https://doi.org/10.1136/bmjopen-2021-051794

Ohnishi Y, Ishibashi T, Sagawa T. Fluorescein gonioangiography in diabetic neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 1994; 232:199-204. https://doi.org/10.1007/BF00184005

Sood G, Siddik AB. Ocular Ischemic Syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; August 13, 2023.

Zadorozhnyy OS, Savin NV, Buiko AS. Improving the technique for controlled cryogenic destruction of conjunctival tumors located in the projection of the ciliary body onto the sclera: A preliminary report. J Ophthalmol (Ukraine). 2018;5:60-65. https://doi.org/10.31288/oftalmolzh201856065

Benson MT, Nelson ME. Cyclocryotherapy: a review of cases over a 10-year period. Br J Ophthalmol. 1990;74(2):103-5. https://doi.org/10.1136/bjo.74.2.103

Ruixue W, Tao W, Ning L. A Comparative Study between Ultrasound Cycloplasty and Cyclocryotherapy for the Treatment of Neovascular Glaucoma. J Ophthalmol. 2020;2020:4016536. https://doi.org/10.1155/2020/4016536

Goldenberg-Cohen N, Bahar I, Ostashinski M, Lusky M, Weinberger D, Gaton DD. Cyclocryotherapy versus transscleral diode laser cyclophotocoagulation for uncontrolled intraocular pressure. Ophthalmic Surg Lasers Imaging. 2005;36(4):272-9. https://doi.org/10.3928/1542-8877-20050701-04

Delgado MF, Dickens CJ, Iwach AG, Novack GD, Nychka DS, Wong PC, et al. Long-term results of noncontact neodymium:yttrium-aluminum-garnet cyclophotocoagulation in neovascular glaucoma. Ophthalmology. 2003;110(5):895-899. https://doi.org/10.1016/S0161-6420(03)00103-9

Denis P, Aptel F, Rouland JF, Nordmann JP, Lachkar Y, Renard JP, et al. Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: a 12-month multicenter study. Invest Ophthalmol Vis Sci. 2015;56(2):1089-1096. https://doi.org/10.1167/iovs.14-14973

Dastiridou AI, Katsanos A, Denis P, Francis BA, Mikropoulos DG, Teus MA, et al. Cyclodestructive Procedures in Glaucoma: A Review of Current and Emerging Options. Adv Ther. 2018;35(12):2103-2127. https://doi.org/10.1007/s12325-018-0837-3

Billings B, Fletcher DB, Weaver AC, Alkaelani MT, Fallgatter K, Daneshvar R. Scleral burn and perforation following transscleral cyclophotocoagulation. Am J Ophthalmol Case Rep. 2023;32:101893. https://doi.org/10.1016/j.ajoc.2023.101893

Rotchford AP, Jayasawal R, Madhusudhan S, Ho S, King AJ, Vernon SA. Transscleral diode laser cycloablation in patients with good vision. Br J Ophthalmol. 2010;94(9):1180-1183. https://doi.org/10.1136/bjo.2008.145565

Shalaby WS, Ganjei AY, Wogu B, Myers JS, Moster MR, Razeghinejad R, et al. Outcomes of Ahmed glaucoma valve and transscleral cyclophotocoagulation in neovascular glaucoma. Indian J Ophthalmol. 2022;70(4):1253-1259. https://doi.org/10.4103/ijo.IJO_2107_21

Ford RL, Knight OJ, Klifto MR, Zhang AY, Wiesen CA, Fleischman D. A Pilot Study Assessing Treatment Outcomes in Neovascular Glaucoma Using Ahmed Glaucoma Valve with and without Cyclophotocoagulation. J Curr Glaucoma Pract. 2022;16(1):4-10. https://doi.org/10.5005/jp-journals-10078-1358

Zadorozhnyy O, Alibet Y, Kryvoruchko A, Levytska G, Pasyechnikova N. Dimensions of ciliary body structures in various axial lengths in patients with rhegmatogenous retinal detachment. J Ophthalmol (Ukraine). 2017;6:32-35. https://doi.org/10.31288/oftalmolzh201763236

Zadorozhnyy O, Guzun O, Kustryn T, Nasinnyk I, Chechin P, Korol A. Targeted transscleral laser photocoagulation of the ciliary body in patients with neovascular glaucoma. J Ophthalmol (Ukraine). 2019;4:3-7. https://doi.org/10.31288/oftalmolzh2019437

Brancato R., Leoni G., Trabucchi G., Cappellini A. Histopathology of continuous wave neodymium:yttrium aluminum garnet and diode laser contact transscleral lesions in rabbit ciliary body. A comparative study. Invest Ophthalmol Vis Sci. 2004;32:1586-92.

McKelvie PA, Walland MJ. Pathology of cyclodiode laser: a series of nine enucleated eyes. Br J Ophthalmol. 2002;86(4):381-386. https://doi.org/10.1136/bjo.86.4.381

Chechyn PP, Vyt VV, Huzun OV. Histomorphological changes in the sclera and ciliary body after transscleral contact-compression neodymium laser coagulation. J Ophthalmol (Ukraine). 2018;2:41-44. in Russian.

Guzun O, Zadorozhnyy O, Artyomov А, Elagina V. Histological Changes in the Intraocular Structures of an Enucleated Eye with Uveal Melanoma and Secondary Painful Neovascular Glaucoma after Palliative Diode Transscleral Cyclophotocoagulation (Clinical Case). Oftalmologija. Vostochnaja Evropa. 2021;3(11):368-377. https://doi.org/10.34883/PI.2021.11.3.037

Moussa К, Feinstein M, Pekmezci M. Histologic Changes Following Continuous Wave and Micropulse Transscleral Cyclophotocoagulation: A Randomized Comparative Study. Transl Vis Sci Technol. 2020;9(5):22. https://doi.org/10.1167/tvst.9.5.22

Gupta S, Chang EK, Chachanidze M, Hall N, Neeson C, Klug E, et al. Outcomes of a combination of augmented MicroPulse and limited Continuous Wave Cyclophotocoagulation in patients with refractory glaucoma. Graefes Arch Clin Exp Ophthalmol. 2022;260(5):1583-1592. https://doi.org/10.1007/s00417-021-05436-1

Koraszewska-Matuszewska B, Leszczyński R, Samochowiec-Donocik E, Nawrocka L. Cyclodestructive procedures in secondary glaucoma in children. Klin Oczna. 2004;106(1-2 Suppl):199-200.

Published

2024-05-01

How to Cite

1.
Guzun O, Zadorozhnyy O, Wael C. Current strategy of treatment for neovascular glaucoma secondary to retinal ischemic lesions. J.ophthalmol. (Ukraine) [Internet]. 2024 May 1 [cited 2024 May 29];(2):32-9. Available from: https://ua.ozhurnal.com/index.php/files/article/view/114

Most read articles by the same author(s)