Efficacy of Nd:YAG and diode laser transscleral cyclophotocoagulation in the management of neovascular glaucoma associated with proliferative diabetic retinopathy

Authors

  • O.V. Guzun SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine" https://orcid.org/0009-0003-6873-8503
  • O.S. Zadorozhnyy SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine" https://orcid.org/0000-0003-0125-2456
  • I.O. Nasinnyk SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"
  • W. Chargui SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"
  • Y. Oueslati Principal Military Hospital of Instruction of Tunis Tunis
  • A.R. Korol SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"

DOI:

https://doi.org/10.31288/oftalmolzh20243815

Keywords:

neovascular glaucoma, proliferative diabetic retinopathy, intraocular pressure, Nd:YAG laser, diode laser, cyclophotocoagulation

Abstract

Background: Transscleral cyclophotocoagulation (TSCPC) is most commonly used in patients with neovascular glaucoma (NVG) associated with proliferative diabetic retinopathy (PDR) in whom maximal hypotensive medications have failed to reduce intraocular pressure (IOP) to the desired level, and glaucoma surgery cannot be carried out. Options for CPC can be performed using a neodymium:yttrium-aluminum-garnet (Nd:YAG) laser or diode laser.
Purpose: To compare the efficacy of TSCPC performed with the 1,064-nm Nd:YAG laser versus 810-nm diode laser in patients with painful NVG associated with PDR over a 12-month follow-up period.
Material and Methods: A prospective cohort study was carried out on 58 type 2 diabetics (58 eyes) who received a 1,064-nm Nd:YAG laser TSCPC or 810-nm diode laser TSCPC for painful NVG associated with PDR, with regular follow-up visits over 12 months and had no previous history of treatment with CPC. IOP between 6 and 21 mmHg (or a reduction in IOP of ≥ 30% from baseline IOP) and no ocular pain at 12 months was the primary outcome measure.
Results: The success rate at 12 months was 75% and 77% for eyes that received Nd:YAG laser TSCPC and diode laser TSCPC, respectively (p = 0.86). In the Nd:YAG laser TSCPC and diode laser TSCPC groups, the IOP reduced by 46% and 45%, respectively (p = 0.34) from baseline values of 38.0 mmHg and 36.0 mmHg, respectively (p = 0.96) at month 12 after TSCPC. At month 12 after CPC, the BCVA in patients with preserved pattern vision improved in both groups (p = 0.41). The rate of ocular complications was, however, higher in the diode laser TSCPC group (71% versus 33%, p = 0.004).
Conclusion: Nd:YAG laser TSCPC resulted in a reduction in IOP to ≤ 21 mmHg at month 12 in 75%, and diode laser TSCPC, in 77% of patients with NVG associated with PDR. The number of sessions required for treatment success was 3.2 times larger for Nd:YAG laser CPC than for diode laser CPC. Both these types of CPC are safe and can be repeatedly used to improve treatment efficacy.

References

Tang Y, Shi Y, Fan Z. The mechanism and therapeutic strategies for neovascular glaucoma secondary to diabetic retinopathy. Front Endocrinol (Lausanne). 2023;14:1102361. https://doi.org/10.3389/fendo.2023.1102361

Havens SJ, Gulati V. Neovascular Glaucoma. Dev Ophthalmol. 2016;55:196-204. https://doi.org/10.1159/000431196

Garkava NA, Fedirko PA, Babenko TF, Dorichevska RY. Radiation induced violations of blood circulation in the ciliary body and changes of the anterior chamber angle in the pathogenesis of glaucoma in clean-up workers of the Chornobyl NPP accident and residents of contaminated areas. Probl Radiac Med Radiobiol. 2017;22:332-338. https://doi.org/10.33145/2304-8336-2017-22-332-338

Guzun O, Zadorozhnyy O, Wael C. Current Strategy of Treatment for Neovascular Glaucoma Secondary to Retinal Ischemic Lesions. J Ophthalmol (Ukraine). 2024;2:32-39.

https://doi.org/10.31288/oftalmolzh202423239

Aquino MC, Barton K, Tan AM, Sng C, Li X, Loon SC, Chew PT. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: A randomized exploratory study. Clin Exp Ophthalmol. 2015;43:40-46. https://doi.org/10.1111/ceo.12360

Lin P, Wollstein G, Glavas IP, Schuman JS. Contact transscleral neodymium:yttrium‐aluminum‐garnet laser cyclophotocoagulation. Long‐term outcome. Ophthalmology. 2004;111(11):2137‐43. https://doi.org/10.1016/j.ophtha.2004.05.027

Martin KR, Broadway DC. Cyclodiode laser therapy for painful, blind glaucomatous eyes. Br J Ophthalmol. 2001;85(4):474-476. https://doi.org/10.1136/bjo.85.4.474

Ma A, Yu SWY, Wong JKW. Micropulse laser for the treatment of glaucoma: A literature review. Surv Ophthalmol. 2019;64:486-497. https://doi.org/10.1016/j.survophthal.2019.01.001

Pastor SA, Singh K, Lee DA, Juzych MS, Lin SC, Netland PA, Nguyen NT. Cyclophotocoagulation: A report by the American Academy of Ophthalmology. Ophthalmology. 2001;108:2130-2138. https://doi.org/10.1016/S0161-6420(01)00889-2

Schlote T, Derse M, Rassmann K, Nicaeus T, Dietz K, Thiel HJ. Efficacy and safety of contact transscleral diode laser cyclophotocoagulation for advanced glaucoma. J Glaucoma. 2001;10:294-301. https://doi.org/10.1097/00061198-200108000-00009

Vogel A, Dlugos C, Nuffer R, et al. Optical properties of human sclera and their significance for trans-scleral laser use. Fortschr Ophthalmol. 1991;88(6):754-761.

Chechin P, Guzun O, Khramenko N, Peretyagin O. Efficacy of transscleral Nd:YAG laser cyclophotocoagulation and changes in blood circulation in the eye of patients with absolute glaucoma. J Ophthalmol (Ukraine). 2018;2:34-39. https://doi.org/10.31288/oftalmolzh/2018/2/34-39

Zadorozhnyy O, Guzun O, Kustryn T, Nasinnyk I, Chechin P, Korol A. Targeted transscleral laser photocoagulation of the ciliary body in patients with neovascular glaucoma. J Ophthalmol (Ukraine). 2019;4:3-7. https://doi.org/10.31288/oftalmolzh2019437

Guzun O, Zadorozhnyy O, Artyomov А, Elagina V. Histological Changes in the Intraocular Structures of an Enucleated Eye with Uveal Melanoma and Secondary Painful Neovascular Glaucoma after Palliative Diode Transscleral Cyclophotocoagulation (Clinical Case). Oftalmologija. Vostochnaja Evropa. 2021;3(11):368-377. https://doi.org/10.34883/PI.2021.11.3.037

Bernardi E, Töteberg-Harms M. MicroPulse Transscleral Laser Therapy Demonstrates Similar Efficacy with a Superior and More Favorable Safety Profile Compared to Continuous-Wave Transscleral Cyclophotocoagulation. J Ophthalmol. 2022 Feb 8;2022:8566044. https://doi.org/10.1155/2022/8566044

Guzun OV, Velichko LN, Bogdanova AV, Zadorozhnyy OS, Korol AR. Dynamics of the molecular marker of intercellular adhesion (ICAM-1) in patients with neovascular glaucoma after transscleral laser cyclocoagulation. 10-th World glaucoma congress. June 28-July 1, 2023, Rome, Italy. Abstract book. PLB-013 - P.431.

Prum BE Jr, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, et al. Primary Open‐Angle Glaucoma Preferred Practice Pattern Guidelines (2015). Ophthalmology. 2016;123(1):P41‐111. https://doi.org/10.1016/j.ophtha.2015.10.053

European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol. 2021;105(Suppl 1):1-169. doi: 10.1136/bjophthalmol-2021-egsguidelines. PMID: 34675001. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines

Pastor SA, Singh K, Lee DA, et al. Cyclophotocoagulation: a report by the American Academy of Ophthalmology. Ophthalmology. 2001;108:2130-8. https://doi.org/10.1016/S0161-6420(01)00889-2

Youn J, Cox TA, Herndon LW, Allingham RR, Shields MB. A clinical comparison of transscleral cyclophotocoagulation with neodymium: YAG and semiconductor diode lasers. Am J Ophthalmol. 1998;126(5):640-647. https://doi.org/10.1016/S0002-9394(98)00228-1

Chen TC, Pasquale LR, Walton DS, Grosskreutz CL. Diode laser transscleral cyclophotocoagulation. Int Ophthalmol Clin. 1999;39:169-76. https://doi.org/10.1097/00004397-199903910-00015

Linnik LA, Privalov AP, Chechin PP, Zheltov GI, Tverskoĭ IuL. [Laser transscleral contact-compression coagulation of the fundus oculi tissues]. Oftalmol Zh. 1989;(6):362-364.

Duerr ER, Sayed MS, Moster S, Holley T, Peiyao J, Vanner EA, Lee RK. Transscleral Diode Laser Cyclophotocoagulation: A Comparison of Slow Coagulation and Standard Coagulation Techniques. Ophthalmol Glaucoma. 2018;1(2):115-122. https://doi.org/10.1016/j.ogla.2018.08.007

Chan JC, Chow SC, Lai JS. Effectiveness and Safety of Long Duration versus Short Duration Diode Laser Transscleral Cyclophotocoagulation. Clin Ophthalmol. 2020;14:197-204. https://doi.org/10.2147/OPTH.S228910

Alabduljabbar K, Bamefleh DA, Alzaben KA, Al Owaifeer AM, Malik R. Cyclophotocoagulation versus Ahmed Glaucoma Implant in Neovascular Glaucoma with Poor Vision at Presentation. Clin Ophthalmol. 2024;18:163-171. https://doi.org/10.2147/OPTH.S424321

Alzuhairy S, Albahlal A, Aljadaan I, Owaidhah O, Al Shahwan S, Craven ER, Mousa A, Edward DP. Intraocular Pressure Outcomes Following Transscleral Diode Cyclophotocoagulation Using Long and Short Duration Burns. J Glaucoma. 2016;25(9):e782-6. https://doi.org/10.1097/IJG.0000000000000503

Ishida K. Update on results and complications of cyclophotocoagulation. Curr Opin Ophthalmol. 2013;24(2):102-10. https://doi.org/10.1097/ICU.0b013e32835d9335

Published

2024-07-02

How to Cite

1.
Guzun O, Zadorozhnyy O, Nasinnyk I, Chargui W, Oueslati Y, Korol A. Efficacy of Nd:YAG and diode laser transscleral cyclophotocoagulation in the management of neovascular glaucoma associated with proliferative diabetic retinopathy. J.ophthalmol. (Ukraine) [Internet]. 2024 Jul. 2 [cited 2024 Oct. 11];(3):8-15. Available from: https://ua.ozhurnal.com/index.php/files/article/view/147

Issue

Section

Clinical Ophthalmology