Precise in vivo adaptive optics imaging of retinal vessels


  • Oleg Zadorozhnyy Filatov Institute of Eye Disease and Tissue Therapy
  • Andrii Korol Filatov Institute of Eye Disease and Tissue Therapy
  • Illia Nasinnyk Filatov Institute of Eye Disease and Tissue Therapy
  • Taras Kustrin Filatov Institute of Eye Disease and Tissue Therapy
  • Volodymyr Naumenko Filatov Institute of Eye Disease and Tissue Therapy
  • Nataliya Pasechnikova Filatov Institute of Eye Disease and Tissue Therapy



adaptive optics, retinal vessels, arterial hypertension, diabetic retinopathy


Adaptive optics (AO) provides new, unique opportunities for in vivo visualization of retinal vasculature. AO retinal vessel imaging can be utilized as a component of multimodal imaging tools to complement conventional diagnostic imaging modalities. Non-invasive and highly promising AO imaging of fundus structures allows the qualitative and quantitative assessment of early signs of retinal vascular remodeling associated with age, arterial hypertension, diabetes mellitus and other disorders.

Author Biographies

Oleg Zadorozhnyy, Filatov Institute of Eye Disease and Tissue Therapy


Andrii Korol , Filatov Institute of Eye Disease and Tissue Therapy


Nataliya Pasechnikova, Filatov Institute of Eye Disease and Tissue Therapy

д.мед.н., професор, член-кор. НАМН України.


Nardin M, Coschignano MA, Rossini C, De Ciuceis C, Caletti S, Rizzoni M, et al. Methods of evaluation of microvascular structure: state of the art. Eur J Transl Clin Med. 2018;1(1):7-17.

Angel J. Ground-based imaging of extrasolar planets using adaptive optics. Nature. 1994; 368:203-207.

Hardy JW. Adaptive Optics for Astronomical Telescopes. Oxford University Press; 1998; 448 p.

Rodríguez C, Ji N. Adaptive optical microscopy for neurobiology. Curr Opin Neurobiol. 2018; 50:83-91.

Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat Commun. 2015; 6:7276.

Akyol E, Hagag AM, Sivaprasad S, Lotery AJ. Adaptive optics: principles and applications in ophthalmology. Eye. 2021; 35(1):244-264.

Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997; 14(11):2884-92.

Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM, Williams DR, Carroll J. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express. 2011; 2(7):1864-76.

Pallikaris A, Williams DR, Hofer H. The reflectance of single cones in the living human eye. Invest Ophthalmol Vis Sci. 2003; 44:4580-4592.

Rossi EA, Granger CE, Sharma R, Yang Q, Saito K, Schwarz C, et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc Natl Acad Sci U S A. 2017; 114(3):586-591.

Scoles D, Sulai YN, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed Opt Express. 2013; 4(9):1710-1723.

Laforest T, Künzi M, Kowalczuk L, Carpentras D, Behar-Cohen F, Moser C. Transscleral Optical Phase Imaging of the Human Retina. Nat Photonics. 2020; 14(7):439-445.

Rizzoni D, Docchio F. Assessment of retinal arteriolar morphology by noninvasive methods: the philosopher's stone? J Hypertens. 2016; 34(6):1044-6.

Zacharria M, Lamory B, Chateau N. New view of the eye. Nature Photon. 2011; 5:24-26.

Bakker E, Dikland FA, van Bakel R, Andrade De Jesus D, Sánchez Brea L, et al. Adaptive optics ophthalmoscopy: a systematic review of vascular biomarkers. Surv Ophthalmol. 2022; 67(2):369-387.

Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, Carroll J, Dubra A. In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci. 2014; 55(7):4244-4251.

Zhang B, Li N, Kang J, He Y, Chen XM. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update. Int J Ophthalmol. 2017; 10(11):1751-1758.

Carroll J, Kay DB, Scoles D, Dubra A, Lombardo M. Adaptive optics retinal imaging - clinical opportunities and challenges. Curr Eye Res. 2013; 38(7):709-21.

Jonnal RS, Kocaoglu OP, Zawadzki RJ, Liu Z, Miller DT, Werner JS. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future. Invest Ophthalmol Vis Sci. 2016; 57(9):51-68.

Chui TY, Gast TJ, Burns SA. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2013; 54(10):7115-24.

Ikram MK, Cheung CY, Lorenzi M, Klein R, Jones TL, Wong TY; NIH/JDRF Workshop on Retinal Biomarker for Diabetes Group. Retinal vascular caliber as a biomarker for diabetes microvascular complications. Diabetes Care. 2013; 36(3):750-9.

Rosenbaum D, Alessandro M, Koch E, Rossant F, Gallo A, Kachenoura N, et al. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J Hypertens. 2016; 34:1115-1122.

Hillard JG, Gast TJ, Chui TY, Sapir D, Burns SA. Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics. Transl Vis Sci Technol. 2016; 5(4):16.

Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, et al. Prognostic significance of small-artery structure in hypertension. Circulation. 2003; 108(18):2230-5.

Meixner E, Michelson G. Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research. Graefes Arch Clin Exp Ophthalmol. 2015; 253(11):1985-95.

Koch E, Rosenbaum D, Brolly A, Sahel JA, Chaumet-Riffaud P, Girerd X, et al. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens. 2014; 32(4):890-898.

Arichika S, Uji A, Ooto S, Muraoka Y, Yoshimura N. Effects of age and blood pressure on the retinal arterial wall, analyzed using adaptive optics scanning laser ophthalmoscopy. Sci Rep. 2015; 5:12283.

Baleanu D, Ritt M, Harazny J, Heckmann J, Schmieder RE, Michelson G. Wall-to-lumen ratio of retinal arterioles and arteriole-to-venule ratio of retinal vessels in patients with cerebrovascular damage. Invest Ophthalmol Vis Sci. 2009; 50(9):4351-9.

Rizzoni D, Porteri E, Duse S, De Ciuceis C, Rosei CA, La Boria E, et al. Relationship between media-to-lumen ratio of subcutaneous small arteries and wall-to-lumen ratio of retinal arterioles evaluated noninvasively by scanning laser Doppler flowmetry. J Hypertens. 2012; 30(6):1169-75. 10.1097/HJH.0b013e328352f81d.

Salvetti M, Agabiti Rosei C, Paini A, Aggiusti C, Cancarini A, Duse S, et al. Relationship of wall-to-lumen ratio of retinal arterioles with clinic and 24-hour blood pressure. Hypertension. 2014; 63(5):1110-5.

Zaleska-Żmijewska A, Piątkiewicz P, Śmigielska B, Sokołowska-Oracz A, Wawrzyniak ZM, Romaniuk D, et al. Retinal Photoreceptors and Microvascular Changes in Prediabetes Measured with Adaptive Optics (rtx1™): A Case-Control Study. J Diabetes Res. 2017; 2017:4174292.

Arichika S, Uji A, Murakami T, Suzuma K, Gotoh N, Yoshimura N. Correlation of retinal arterial wall thickness with atherosclerosis predictors in type 2 diabetes without clinical retinopathy. Br J Ophthalmol. 2017; 101(1):69-74. 10.1136/bjophthalmol-2016-309612.

Zaleska-Żmijewska A, Wawrzyniak ZM, Dąbrowska A, Szaflik JP. Adaptive Optics (rtx1) High-Resolution Imaging of Photoreceptors and Retinal Arteries in Patients with Diabetic Retinopathy. J Diabetes Res. 2019; 2019:9548324. 10.1155/2019/9548324.

Cristescu IE, Zagrean L, Balta F, Branisteanu DC. Retinal microcirculation investigation in type I and II diabetic patients without retinopathy using an adaptive optics retinal camera. Acta Endocrinol (Buchar). 2019; 15(4):417-422.

Streese L, Brawand LY, Gugleta K, Maloca PM, Vilser W, Hanssen H. New frontiers in noninvasive analysis of retinal wall-to-lumen ratio by retinal vessel wall analysis. Trans Vis Sci Tech. 2020; 9(6):7,

Ueno Y, Iwase T, Goto K, Tomita R, Ra E, Yamamoto K, Terasaki H. Association of changes of retinal vessels diameter with ocular blood flow in eyes with diabetic retinopathy. Sci Rep. 2021; 11(1):4653.

Sadowski J, Targonski R, Cyganski P, Nowek P, Starek-Stelmaszczyk M, Zajac K, et al. Remodeling of Retinal Arterioles and Carotid Arteries in Heart Failure Development - A Preliminary Study. J. Clin. Med. 2022; 11:3721.

Baltă F, Cristescu IE, Mirescu AE, Baltă G, Zemba M, Tofolean IT. Investigation of Retinal Microcirculation in Diabetic Patients Using Adaptive Optics Ophthalmoscopy and Optical Coherence Angiography. J Diabetes Res. 2022; 2022:1516668.

Martin JA, Roorda A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology. 2005; 112(12):2219-24. 10.1016/j.ophtha.2005.06.033.

Martin JA, Roorda A. Pulsatility of parafoveal capillary leukocytes. Exp Eye Res. 2009; 88(3):356-60.

Antonios TF. Microvascular rarefaction in hypertension--reversal or over-correction by treatment? Am J Hypertens. 2006; 19(5):484-5.

Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001; 104(6):735-40.

Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM. Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens. 2005; 23(2):247-50.

Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens. 2001; 19(5):921-30.

Harazny JM, Ritt M, Baleanu D, Ott C, Heckmann J, Schlaich MP, et al. Increased wall:lumen ratio of retinal arterioles in male patients with a history of a cerebrovascular event. Hypertension. 2007; 50(4):623-9.

Ritt M, Schmieder RE. Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension. 2009; 54(2):384-7.

Сhui TY, Dubow M, Pinhas A, Shah N, Gan A, Weitz R, et al. Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging. Biomed Opt Express. 2014; 5(4):1173-89.

Burns SA, Elsner AE, Chui TY, Vannasdale DA Jr, Clark CA, Gast TJ, et al. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express. 2014; 5(3):961-74.

Lombardo M, Parravano M, Serrao S, Ducoli P, Stirpe M, Lombardo G. Analysis of retinal capillaries in patients with type 1 diabetes and nonproliferative diabetic retinopathy using adaptive optics imaging. Retina. 2013; 33(8):1630-9.

Chen Y, Chen SDM, Chen FK. Branch retinal vein occlusion secondary to a retinal arteriolar macroaneurysm: a novel mechanism supported by multimodal imaging. Retin Cases Brief Rep. 2019; 13(1):10-14.

Paques M, Brolly A, Benesty J, Lermé N, Koch E, Rossant F, et al. Venous Nicking Without Arteriovenous Contact: The Role of the Arteriolar Microenvironment in Arteriovenous Nickings. JAMA Ophthalmol. 2015; 133(8):947-50.

Errera MH, Laguarrigue M, Rossant F, Koch E, Chaumette C, Fardeau C, et al. High-Resolution Imaging of Retinal Vasculitis by Flood Illumination Adaptive Optics Ophthalmoscopy: A Follow-up Study. Ocul Immunol Inflamm. 2020; 28(8):1171-1180.

Tan W, Yao X, Le TT, Tan B, Schmetterer L, Chua J. The New Era of Retinal Imaging in Hypertensive Patients. Asia Pac J Ophthalmol. 2022; 11(2):149-159.

Novais EA, Baumal CR, Sarraf D, Freund KB, Duker JS. Multimodal Imaging in Retinal Disease: A Consensus Definition. Ophthalmic Surg Lasers Imaging Retina. 2016; 47(3):201-5. doi: 10.3928/23258160-20160229-01.

Camino A, Zang P, Athwal A, Ni S, Jia Y, Huang D, Jian Y. Sensorless adaptive-optics optical coherence tomographic angiography. Biomed Opt Express. 2020; 11(7):3952-3967. doi: 10.1364/BOE.396829.

Chui TYP, Mo S, Krawitz B, Menon NR, Choudhury N, Gan A, et al. Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int J Retina Vitreous. 2016; 2:11. doi: 10.1186/s40942-016-0037-8.



How to Cite

Zadorozhnyy O, Korol A, Nasinnyk I, Kustrin T, Naumenko V, Pasechnikova N. Precise in vivo adaptive optics imaging of retinal vessels. JO (Ukraine) [Internet]. 2023 Apr. 25 [cited 2023 Jun. 7];(2):31-8. Available from: