Assessing the impact of short-term intraocular pressure fluctuations on primary open-angle glaucoma progression

Authors

  • Nina Lutsenko Zaporizhzhia State Medical and Pharmaceutical University , Zaporizhzhia Regional Clinical Hospital
  • Taras Nedilka Zaporizhzhia Regional Clinical Hospital

DOI:

https://doi.org/10.31288/oftalmolzh2024137

Keywords:

glaucoma, glaucoma progression, intraocular pressure, short-term fluctuations, optical coherence tomography

Abstract

Purpose: To examine the impact of short-term intraocular pressure (IOP) fluctuations on the progression of glaucomatous optic neuropathy based on optical coherence tomography (OCT) data.

Material and Methods: Totally, 32 patients (62 eyes) with primary open-angle glaucoma (POAG) were included in the study and divided into two groups. Group 1 comprised 15 patients (30 eyes) with a standard deviation (SD) of IOP of less or equal to 3 mmHg, and group 2, 17 patients (32 eyes) with an SD of IOP greater than 3 mmHg. Patients were followed over 12 months. At baseline, at 6 and 12 months, they had a routine eye examination and OCT of the optic nerve and macula, with retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) thicknesses determined. At 12 months, the rebound tonometer ICare Home2 was used for diurnal IOP measurements, and an SD of IOP was determined.

Results: In group 1 and group 2, annual losses in RNFL were 3.20 ± 3.86 µm/year and 8.11 ± 9.1 µm/year, respectively (р = 0.03), and global GCC losses, 0.87 ± 3.98% and 5.24 ± 8.05%, respectively (р = 0.04). There was a statistically significant positive correlation of the SD of IOP measurements with annual loss in GCC thickness (r = 0.5161; р = 0.02) and global GCC loss (r = 0.6258; р = 0.03) for group 2, but no significant correlation for group 1.

Conclusion: IOP fluctuation (SD > 3 mmHg) is a factor of glaucoma progression which impacts particularly on retinal GCC losses.

References

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006 Mar;90(3):262-7. https://doi.org/10.1136/bjo.2005.081224

Parihar JK. Glaucoma: The 'Black hole' of irreversible blindness. Med J Armed Forces India. 2016 Jan;72(1):3-4. https://doi.org/10.1016/j.mjafi.2015.12.001

Saunders LJ, Medeiros FA, Weinreb RN, Zangwill LM. What rates of glaucoma progression are clinically significant? Expert Rev Ophthalmol. 2016;11(3):227-234. https://doi.org/10.1080/17469899.2016.1180246

European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol. 2021 Jun;105(1):1-169. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines

Caprioli J, Coleman AL. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology. 2008 Jul;115(7):1123-1129.e3. https://doi.org/10.1016/j.ophtha.2007.10.031

Grippo TM, Liu JH, Zebardast N, Arnold TB, Moore GH, Weinreb RN. Twenty-four-hour pattern of intraocular pressure in untreated patients with ocular hypertension. Invest Ophthalmol Vis Sci. 2013 Jan 17;54(1):512-7. https://doi.org/10.1167/iovs.12-10709

De Moraes CG, Juthani VJ, Liebmann JM, Teng CC, Tello C, Susanna R Jr, Ritch R. Risk factors for visual field progression in treated glaucoma. Arch Ophthalmol. 2011 May;129(5):562-8. doi.org/10.1001/archophthalmol.2011.72

Bengtsson B, Leske MC, Hyman L, Heijl A; Early Manifest Glaucoma Trial Group. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology. 2007 Feb;114(2):205-9. https://doi.org/10.1016/j.ophtha.2006.07.060

Wang NL, Friedman DS, Zhou Q, Guo L, Zhu D, Peng Y, et al. A population-based assessment of 24-hour intraocular pressure among subjects with primary open-angle glaucoma: the handan eye study. Invest Ophthalmol Vis Sci. 2011 Oct 3;52(11):7817-21. https://doi.org/10.1167/iovs.11-7528

Zhang X, Francis BA, Dastiridou A, Chopra V, Tan O, Varma R, et al. Advanced Imaging for Glaucoma Study Group. Longitudinal and Cross-Sectional Analyses of Age Effects on Retinal Nerve Fiber Layer and Ganglion Cell Complex Thickness by Fourier-Domain OCT. Transl Vis Sci Technol. 2016 Mar 4;5(2):1.

Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF. Glaucoma: the retina and beyond. Acta Neuropathol. 2016 Dec;132(6):807-826. https://doi.org/10.1007/s00401-016-1609-2

Scuderi G, Fragiotta S, Scuderi L, Iodice CM, Perdicchi A. Ganglion Cell Complex Analysis in Glaucoma Patients: What Can It Tell Us? Eye Brain. 2020 Jan 31;12:33-44. https://doi.org/10.2147/EB.S226319

Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009 Dec;116(12):2305-14.e1-2. https://doi.org/10.1016/j.ophtha.2009.05.025

Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4646-51. https://doi.org/10.1167/iovs.09-5053

The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000 Oct;130(4):429-40. https://doi.org/10.1016/S0002-9394(00)00538-9

Matlach J, Bender S, König J, Binder H, Pfeiffer N, Hoffmann EM. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin Ophthalmol. 2018 Dec 18;13:9-16. https://doi.org/10.2147/OPTH.S186526

Tanna, A.P., Desai, R.U. Evaluation of Visual Field Progression in Glaucoma. Curr Ophthalmol Rep. 2014 May 07;2:75-79. https://doi.org/10.1007/s40135-014-0038-4

Scuderi G, Fragiotta S, Scuderi L, Iodice CM, Perdicchi A. Ganglion Cell Complex Analysis in Glaucoma Patients: What Can It Tell Us? Eye Brain. 2020 Jan 31;12:33-44. https://doi.org/10.2147/EB.S226319

Keltner JL, Johnson CA, Cello KE, Bandermann SE, Fan J, Levine RA, et al. Ocular Hypertension Treatment Study Group. Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma. 2007 Dec;16(8):665-9. https://doi.org/10.1097/IJG.0b013e318057526d

Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Sample PA, Girkin CA, et al. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3531-9. doi: 10.1167/iovs.09-4350. https://doi.org/10.1167/iovs.09-4350

Published

2024-02-29

How to Cite

1.
Lutsenko N, Nedilka T. Assessing the impact of short-term intraocular pressure fluctuations on primary open-angle glaucoma progression. J.ophthalmol. (Ukraine) [Internet]. 2024 Feb. 29 [cited 2025 Jan. 22];(1):3-7. Available from: https://ua.ozhurnal.com/index.php/files/article/view/81

Issue

Section

Clinical Ophthalmology