Особливості теплообміну ока людини (огляд літератури)
DOI:
https://doi.org/10.31288/oftalmolzh202265058Ключові слова:
теплообмін ока, температура поверхні ока, тепловий потік, внутрішньоочна температура, математичне моделюванняАнотація
Тепловий гомеостаз потрібен для нормального функціонування організму людини у різних умовах навколишнього середовища. Різноманітні патологічні процеси, які впливають на метаболізм в тканинах та органах, в тому числі в оці людини, супроводжуються зміною відносної внутрішньої теплової рівноваги. Питання теплообміну ока ще залишаються недостатньо вивченими, незважаючи на значний накопичений досвід проведених раніше досліджень. Подальше вивчення особливостей теплообміну ока не лише розширить наші знання у галузі фізіології ока, але також дозволить використовувати отримані дані для створення сучасних методів діагностики та лікування офтальмологічних захворювань.
Посилання
Guyton AC, Hall JE. Textbook of Medical Physiology. 11th ed. Amsterdam: Elsevier Saunders; 2006. 890 p.
Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol. 1973;12(8):596-602.
Mayer SA, Sessler VA. Therapeutic Hypothermia. New York: Marcel Dekker; 2005. 402 p. https://doi.org/10.3109/9780203997345
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin). 2019;6(4):271-333. https://doi.org/10.1080/23328940.2019.1691896
Tsariov А. Target temperature management in clinical practice of intensive care for critical states. Emergency Medicine. 2014;7(62):186-191. https://doi.org/10.22141/2224-0586.7.62.2014.84183
Avetisov SE, Novikov IA, Lutsevich EE, Reyn ES. Use of infrared thermography in ophthalmology. Vestn Oftalmol. 2017;133(6):99 105. https://doi.org/10.17116/oftalma2017133699-104
Martin DK, Fatt I. The presence of a contact lens induces a very small increase in the anterior corneal surface temperature. Acta Ophthalmol (Copenh). 1986;64(5):512-518. https://doi.org/10.1111/j.1755-3768.1986.tb06964.x
Kudinov VA, Kartashov EM, Stefanyuk EV. Technical thermodynamics and heat transfer. Textbook for Academic Baccalaureate. Мoscow: Yurait; 2019. 454 p.
Savvin VN, Korotkova OL, Shishkin GP. The use of thermodynamic approaches in assessing the state of a living system. Vyatka Medical Bulletin. 2017; 2:40-44.
Lucia U. Bioengineering thermodynamics of biological cells. Theor Biol Med Model. 2015;12:29. https://doi.org/10.1186/s12976-015-0024-z
Grischenko TG, Dekusha LV, Vorobiov LY. Heat flow measuring: theory, metrology, practice. Book 1. Methods and means of heat flow measuring. Kiev: Institute of Engineering Thermophysics of NASU; 2017. 438 p.
Mapstone R. Determinants of corneal temperature. Br J Ophthalmol. 1968;52(10):729-41. https://doi.org/10.1136/bjo.52.10.729
Purslow C, Wolffsohn J. The relation between physical properties of the anterior eye and ocular surface temperature. Optom Vis Sci. 2007;84(3):197-201. https://doi.org/10.1097/OPX.0b013e3180339f6e
Emery AF, Kramar P, Guy AW, Lin, JC. Microwave induced temperature rises in rabbit eyes in cataract research. J Heat Transfer. 1975;97(1):123-128. https://doi.org/10.1115/1.3450259
Holmberg A. The temperature of the eye during the application of hot packs, and after milk injections. Acta Ophthalmol (Copenh). 1952;30(4):348-364. https://doi.org/10.1111/j.1755-3768.1952.tb00011.x
Zeiss E. Über Wärmestrahlungsmessungen an der lebenden menschlichen Hornhaut. Arch Augenheilkd. 1930;102:523-550.
Mapstone R. Measurement of corneal temperature. Exp Eye Res. 1968;7(2):237-43. https://doi.org/10.1016/S0014-4835(68)80073-9
Purslow C, Wolffsohn JS. Ocular surface temperature: a review. Eye Contact Lens. 2005;31(3):117-123. https://doi.org/10.1097/01.ICL.0000141921.80061.17
Buiko AS, Tsyikalo AL, Terenteva LS. Liquid crystal thermography in oncoophthalmology. J Ophthalmol (Ukraine). 1977;2:110-114.
Guo S, Wu K, Li C, Wang H, Sun Z, Xi D, Zhang S, Ding W, Zaghloul ME, Wang C, Castro FA, Yang D, Zhao Y. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter. 2021;4(3):969-985. https://doi.org/10.1016/j.matt.2020.12.002
Moreddu R, Elsherif M, Butt H, Vigolo D, Yetisen AK. Contact lenses for continuous corneal temperature monitoring. RSC Adv. 2019;9(20):11433-11442. https://doi.org/10.1039/C9RA00601J
Chang TC, Hsiao YL, Liao SL. Application of digital infrared thermal imaging in determining inflammatory state and follow-up effect of methylprednisolone pulse therapy in patients with Graves' ophthalmopathy. Graefes Arch Clin Exp Ophthalmol. 2008;246(1):45-9. https://doi.org/10.1007/s00417-007-0643-0
Kawasaki S, Mizoue S, Yamaguchi M, Shiraishi A, Zheng X, Hayashi Y, Ohashi Y. Evaluation of filtering bleb function by thermography. Br J Ophthalmol. 2009;93(10):1331-6. https://doi.org/10.1136/bjo.2008.152066
Wang C, Jiao H, Anatychuk L, Pasyechnikova N, Naumenko V, Zadorozhnyy O, Vikhor L, Kobylianskyi R, Fedoriv R, Kochan O. Development of a Temperature and Heat Flux Measurement System Based on Microcontroller and its Application in Ophthalmology. Measurement Science Review. 2022;22(2):73-79. https://doi.org/10.2478/msr-2022-0009
Anatychuk L, Pasyechnikova N, Zadorozhnyy O, Nazaretian R, Myrnenko V, Kobylyanskyi R, Gavrilyuk N. Original device and approaches to the study of temperature distribution in various eye segments (experimental study). J Ophthalmol (Ukraine). 2015;6:50-53. https://doi.org/10.31288/oftalmolzh201565053
Schwartz B, Feller MR. Temperature gradients in the rabbit eye. Invest Ophthalmol. 1962;1:513-21.
Nazaretian RE, Zadorozhnyy OS, Umanets NN, Naumenko VA, Pasyechnikova NV, Shafranskii VV. Intraocular temperature changes during vitrectomy procedure. J Ophthalmol (Ukraine). 2018;6:30-4. https://doi.org/10.31288/oftalmolzh201863034
Iguchi Y, Asami T, Ueno S, Ushida H, Maruko R, Oiwa K, Terasaki H. Changes in vitreous temperature during intravitreal surgery. Invest Ophthalmol. 2014;55(4):2344-9. https://doi.org/10.1167/iovs.13-13065
Mansouri K, Gillmann K, Rao HL, Szurman P, Weinreb RN; ARGOS -2 Study Group. Measurement of intraocular temperature in glaucoma: week-day and seasonal fluctuations. Br J Ophthalmol. 2022;bjophthalmol-2021-320495.
Horven I. Corneal temperature in normal subjects and arterial occlusive disease. Acta Ophthalmol (Copenh). 1975;53(6):863-874.
https://doi.org/10.1111/j.1755-3768.1975.tb00404.x
Alio' J, Padron M. Influence of age on the temperature of the anterior segment of the eye: measurements by infrared thermometry. Ophthalmic Res. 1982;14:153-159. https://doi.org/10.1159/000265187
Martin DK, Fatt I. The presence of a contact lens induces a very small increase in the anterior corneal surface temperature. Acta Ophthalmol (Copenh). 1986;64(5):512-518. https://doi.org/10.1111/j.1755-3768.1986.tb06964.x
Koçak I, Orgül S, Flammer J. Variability in the measurement of corneal temperature using a noncontact infrared thermometer. Ophthalmologica. 1999;213(6):345-349. https://doi.org/10.1159/000027452
Morgan PB, Soh MP, Efron N, Tullo AB. Potential Applications of Ocular Thermography. Optom Vis Sci. 1993;70(7):568-76. https://doi.org/10.1097/00006324-199307000-00008
Craig JP, Singh I, Tomlinson A, Morgan PB, Efron N. The role of tear physiology in ocular surface temperature. Eye (Lond). 2000;14(4):635-641. https://doi.org/10.1038/eye.2000.156
Tan L, Cai ZQ, Lai NS. Accuracy and sensitivity of the dynamic ocular thermography and inter-subjects ocular surface temperature (OST) in Chinese young adults. Cont Lens Anterior Eye. 2009;32(2):78-83. https://doi.org/10.1016/j.clae.2008.09.003
Kamao T, Yamaguchi M, Kawasaki S, Mizoue S, Shiraishi A, Ohashi Y. Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol. 2011;151(5):782-791.e1. https://doi.org/10.1016/j.ajo.2010.10.033
Sodi A, Matteoli S, Giacomelli G, Finocchio L, Corvi A, Menchini U. Ocular surface temperature in age-related macular degeneration. J Ophthalmol. 2014;2014:281010. https://doi.org/10.1155/2014/281010
Abreau K, Callan C, Kottaiyan R, Zhang A, Yoon G, Aquavella JV, Zavislan J, Hindman HB. Temperatures of the ocular surface, lid, and periorbital regions of sjögren's, evaporative, and aqueous-deficient dry eyes relative to normals. Ocul Surf. 2016;14(1):64-73. https://doi.org/10.1016/j.jtos.2015.09.001
Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Gavrilyuk MV, Kobylianskyi RR. A thermoelectric device for ophthalmic heat flux density measurements: results of piloting in healthy individuals. J Ophthalmol (Ukraine). 2019; 3:45-51. https://doi.org/10.31288/oftalmolzh201934551
Matteoli S, Vannetti F, Sodi A, Corvi A. Infrared thermographic investigation on the ocular surface temperature of normal subjects. Physiol Meas. 2020;41(4):045003. https://doi.org/10.1088/1361-6579/ab6b48
Chandrasekar B, Rao AP, Murugesan M, Subramanian S, Sharath D, Manoharan U, Prodip B, Balasubramaniam V. Ocular surface temperature measurement in diabetic retinopathy. Exp Eye Res. 2021;;211:108749. https://doi.org/10.1016/j.exer.2021.108749
Mapstone R. Ocular thermography. Br J Ophthalmol. 1970;54(11):751-4. https://doi.org/10.1136/bjo.54.11.751
Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic behaviour of the cornea during treatment with two excimer laser platforms. Transl Vis Sci Technol. 2021;10(9):27. https://doi.org/10.1167/tvst.10.9.27
Purslow C, Wolffsohn JS, Santodomingo-Rubido J. The effect of contact lens wear on dynamic ocular surface temperature. Cont Lens Anterior Eye. 2005;28(1):29-36. https://doi.org/10.1016/j.clae.2004.10.001
Tan JH, Ng EYK, Acharya UR, Chee C. Infrared thermography on ocular surface temperature: A review. Infrared Phys Techn. 2009;52:97-108. https://doi.org/10.1016/j.infrared.2009.05.002
Rysä P, Sarvaranta J. Corneal temperature in man and rabbit. Observations made using an infra-red camera and a cold chamber. Acta Ophthalmol (Copenh). 1974;52(6):810-6. https://doi.org/10.1111/j.1755-3768.1974.tb01117.x
Petznick A, Tan JH, Boo SK, Lee SY, Acharya UR, Tong L. Repeatability of a new method for measuring tear evaporation rates. Optom Vis Sci. 2013;90(4):366-371. https://doi.org/10.1097/OPX.0b013e318288bdd1
Shah AM, Galor A. Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights. Clin Optom (Auckl). 2021;13:51-62. https://doi.org/10.2147/OPTO.S281601
Morgan PB, Tullo A, Efron N. Infrared thermography of the tear film in dry eye. Eye (Lond). 1995;9:615-618. https://doi.org/10.1038/eye.1995.149
Tan LL, Sanjay S, Morgan PB. Screening for dry eye disease using infrared ocular thermography. Cont Lens Anterior Eye. 2016;39(6):442-449. https://doi.org/10.1016/j.clae.2016.08.004
Matteoli S, Favuzza E, Mazzantini L, Aragona P, Cappelli S, Corvi A, Mencucci R. Ocular surface temperature in patients with evaporative and aqueous-deficient dry eyes: a thermographic approach. Physiol Meas. 2017;38(8):1503-1512. https://doi.org/10.1088/1361-6579/aa78bd
García-Porta N, Gantes-Nuñez FJ, Tabernero J, Pardhan S. Characterization of the ocular surface temperature dynamics in glaucoma subjects using long-wave infrared thermal imaging. J Opt Soc Am A Opt Image Sci Vis. 2019;36(6):1015-1021. https://doi.org/10.1364/JOSAA.36.001015
Giannetto C, Di Pietro S, Falcone A, Pennisi M, Giudice E, Piccione G, Acri G. Thermographic ocular temperature correlated with rectal temperature in cats. J Therm Biol. 2021;102:103104. https://doi.org/10.1016/j.jtherbio.2021.103104
Dorokhova O, Zborovska O, Meng G, Zadorozhnyy O. Temperature of the ocular surface in the projection of the ciliary body in rabbits. J Ophthalmol (Ukraine). 2020;2(493):65-69. https://doi.org/10.31288/oftalmolzh202026569
Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature. 2020;7(4):321-362. https://doi.org/10.1080/23328940.2020.1743605
Baker FC, Waner JI, Vieira EF, Taylor SR, Driver HS, Mitchell D. Sleep and 24 hour body temperatures: a comparison in young men, naturally cycling women and women taking hormonal contraceptives. J Physiol. 2001;530(3):565-574. https://doi.org/10.1111/j.1469-7793.2001.0565k.x
Morgan PB, Soh MP, Efron N. Corneal surface temperature decreases with age. Cont Lens Anterior Eye. 1999;22(1):11-13. https://doi.org/10.1016/S1367-0484(99)80025-3
Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801-10. https://doi.org/10.1016/j.ajo.2008.12.010
Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Zadorozhnyy O. Temperature and heat flux density of the eye surface in healthy individuals with different subfoveal thickness of the choroid. Acta Ophthalmol. 2022;100: S267. https://doi.org/10.1111/j.1755-3768.2022.035
Sigler EJ, Randolph JC. Comparison of macular choroidal thickness among patients older than age 65 with early atrophic age-related macular degeneration and normals. Invest Ophthalmol. 2013;54(9):6307-13. https://doi.org/10.1167/iovs.13-12653
Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Hramenko NI, Kobylianskyi RR. Temperature of and heat flux density from the external ocular surface in diabetic retinopathy patients: a pilot study. J Ophthalmol (Ukraine). 2019;6:3-6.
Sudhalkar A, Chhablani JK, Venkata A, Raman R, Rao PS, Jonnadula GB. Choroidal thickness in diabetic patients of Indian ethnicity. Indian J Ophthalmol. 2015;63(12):912-6. https://doi.org/10.4103/0301-4738.176024
Gugleta K, Orgül S, Flammer J. Is corneal temperature correlated with blood-flow velocity in the ophthalmic artery? Curr Eye Res. 1999;19(6):496-501. https://doi.org/10.1076/ceyr.19.6.496.5286
Galassi F, Giambene B, Corvi A, Falaschi G. Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and colour Doppler imaging in patients with glaucoma. Br. J. Ophthalmol. 2007;91:878-881. https://doi.org/10.1136/bjo.2007.114397
Morgan PB, Smyth JV, Tullo AB, Efron N. Ocular temperature in carotid artery stenosis. Optom Vis Sci. 1999;76(12):850-4. https://doi.org/10.1097/00006324-199912000-00021
Sodi A, Giambene B, Falaschi G, Caputo R, Innocenti B, Corvi A, Menchini U. Ocular surface temperature in central retinal vein occlusion: preliminary data. Eur J Ophthalmol. 2007;17(5):755-9. https://doi.org/10.1177/112067210701700511
Blomqvist A, Engblom D. Neural mechanisms of inflammation-induced fever. Neuroscientist. 2018;24(4):381-399. https://doi.org/10.1177/1073858418760481
Efron N, Brennan NA, Hore J, Rieper K. Temperature of the hyperemic bulbar conjunctiva. Curr Eye Res. 1988;7(6):615-618. https://doi.org/10.3109/02713688809031818
Klamann MK, Maier AK, Gonnermann J, Klein JP, Bertelmann E, Pleyer U. Ocular surface temperature gradient is increased in eyes with bacterial corneal ulcers. Ophthalmic Res. 2013;49(1):52-6. https://doi.org/10.1159/000343774
Mapstone R. Corneal thermal patterns in anterior uveitis. Br J Ophthalmol. 1968;52(12):917-921. https://doi.org/10.1136/bjo.52.12.917
Kawali AA. Thermography in ocular inflammation. Indian J Radiol Imaging. 2013;23(3):281-3. https://doi.org/10.1055/s-0041-1734381
Leshno A, Stern O, Barkana Y, Kapelushnik N, Singer R, Prat DL, Cohen G, Ben-David G, Abrahami D, Huna-Baron R, Skaat A. Ocular surface temperature differences in glaucoma. Eur J Ophthalmol. 2022;32(3):1518-1524. https://doi.org/10.1177/11206721211023723
Zadorozhnyy OS, Guzun OV, Bratishko AIu, Kustrin TB, Nasinnik IO, Korol AR Infrared thermography of external ocular surface in patients with absolute glaucoma in transscleral cyclophotocoagulation: a pilot study. J Ophthalmol (Ukraine). 2018;2:23-28. https://doi.org/10.31288/oftalmolzh/2018/2/2328
Zadorozhnyy OS, Guzun OV, Kustrin TB, Korol AR, Naumenko VA, Pasyechnikova NV. Ocular heat exchange indices in terminal neovascular glaucoma patients with proliferative diabetic retinopathy. J Ophthalmol (Ukraine). 2020;1:10-13. https://doi.org/10.31288/oftalmolzh202011013
Auker CR, Parver LM, Doyle T, Carpenter DO. Choroidal blood flow. I. Ocular tissue temperature as a measure of flow. Arch Ophthalmol. 1982;100(8):1323-6. https://doi.org/10.1001/archopht.1982.01030040301020
Konieczka K, Koch S, Hauenstein D, Chackathayil TN, Binggeli T, Schoetzau A, Flammer J. Effects of the Glaucoma Drugs Latanoprost and Brimonidine on Corneal Temperature. Transl Vis Sci Technol. 2019;8(3):47. https://doi.org/10.1167/tvst.8.3.47
Merté HJ, Schubert E. Thermographische Untersuchungen. Albrecht von Graefes Arch Klin Ophthalmol. 1971;183:47-52. https://doi.org/10.1007/BF00410347
Galassi F, Giambene B, Corvi A, Falaschi G, Menchini U. Retrobulbar hemodynamics and corneal surface temperature in glaucoma surgery. Int Ophthalmol. 2008;28(6):399-405. https://doi.org/10.1007/s10792-007-9160-8
Fujishima H, Toda I, Yagi Y, Tsubota K. Quantitative evaluation of postsurgical inflammation by infrared radiation thermometer and laser flare-cell meter. J Cataract Refract Surg. 1994;20(4):451-4. https://doi.org/10.1016/S0886-3350(13)80183-6
Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Nazaretyan R, Zadorozhnyy O. Prospects of Temperature Management in Vitreoretinal Surgery. Ther Hypothermia Temp Manag. 2021;11(2):117-121. https://doi.org/10.1089/ther.2020.0019
Zadorozhnyy OS, Savin NV, Buiko AS. Improving the technique for controlled cryogenic destruction of conjunctival tumors located in the projection of the ciliary body onto the sclera: A preliminary report. J Ophthalmol (Ukraine). 2018;5:60-65. https://doi.org/10.31288/oftalmolzh201856065
Betney S, Morgan PB, Doyle SJ, Efron N. Corneal temperature changes during photorefractive keratectomy. Cornea. 1997;16(2):158-61. https://doi.org/10.1097/00003226-199703000-00007
Maldonado-Codina C, Morgan PB, Efron N. Thermal consequences of photorefractive keratectomy. Cornea. 2001;20(5):509-515. https://doi.org/10.1097/00003226-200107000-00014
Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic Behavior of the Cornea During Treatment With Two Excimer Laser Platforms. Transl Vis Sci Technol. 2021;10(9):27. https://doi.org/10.1167/tvst.10.9.27
Sniegowski MC, Erlanger M, Olson J. Thermal imaging of corneal transplant rejection. Int Ophthalmol. 2018;38(6):2335-2339. https://doi.org/10.1007/s10792-017-0731-z
May DR, Freedland RJ, Charles S, Wang C, Bakos J. Ocular hypothermia: anterior chamber perfusion. Br J Ophthalmol. 1983;67(12):808-13. https://doi.org/10.1136/bjo.67.12.808
Schwartz B. Environmental temperature and the ocular temperature gradient. Arch Ophthalmol. 1965;74:237-43. https://doi.org/10.1001/archopht.1965.00970040239022
Anatychuk L, Pasyechnikova N, Zadorozhnyy O, Kobylianskyi R, Nazaretyan R, Myrnenko V. Experimental study of intraocular temperature distribution in the rabbit under various environmental conditions. Acta Ophthalmol. 2016;94:S256. https://doi.org/10.1111/j.1755-3768.2016.0267
Horiguchi M, Miyake Y. Effect of temperature on electroretinograph readings during closed vitrectomy in humans. Arch Ophthalmol. 1991;109(8):1127-1129. https://doi.org/10.1001/archopht.1991.01080080087035
Landers MB 3rd, Watson JS, Ulrich JN, Quiroz-Mercado H. Determination of retinal and vitreous temperature in vitrectomy. Retina. 2012;32(1):172-6. https://doi.org/10.1097/IAE.0b013e31821c3ee0
Romano MR, Vallejo-Garcia JL, Romano V, Angi M, Vinciguerra P, Costagliola C. Thermodynamics of vitreoretinal surgery. Curr Eye Res. 2013;38(3):371-4. https://doi.org/10.3109/02713683.2012.745160
Shinoda K, Matsumoto SC, Yagura K, Terauchi G, Shoji T, Yoshikawa Y, Igawa Y, Mizota A, Miyake Y. Intraocular Temperature Distribution in Eyes Undergoing Different Types of Surgical Procedures during Vitreous Surgery. J Clin Med. 2022;11(7):2053. https://doi.org/10.3390/jcm11072053
Scott JA. A finite element model of heat transport in the human eye. Phys Med Biol. 1988;33(2):227-41. https://doi.org/10.1088/0031-9155/33/2/003
Buck B, Lopezcarasa G, Kon Jara VA, Mwanza J, Landers M. Retinal and intravitreal temperature during vitreous surgery. Invest Ophthalmol. 2014;55(13):1932. https://doi.org/10.1167/iovs.13-13065
Taflove A, Brodwin ME. Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye. IEEE Transactions on Microwave Theory and Techniques. 1975;23(11):888-896, https://doi.org/10.1109/TMTT.1975.1128708
Neelakantaswamy PS, Ramakrishnan KP, Microwave-induced hazardous nonlinear thermoelastic vibrations of the ocular lens in the human eye. Journal of Biomechanics. 1979;12(3):205-210. https://doi.org/10.1016/0021-9290(79)90143-X
Lagendijk JJ. A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment. Phys Med Biol. 1982;27(11):1301-11. https://doi.org/10.1088/0031-9155/27/11/001
Flyckt VM, Raaymakers BW, Lagendijk JJ. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels. Phys Med Biol. 2006;51(19):5007-5021. https://doi.org/10.1088/0031-9155/51/19/018
Ng EY, Ooi EH. FEM simulation of the eye structure with bio-heat analysis. Comput Methods Programs Biomed. 2006;82(3):268-76. https://doi.org/10.1016/j.cmpb.2006.04.001
Ng EY, Ooi EH, Archarya UR. A comparative study between the two-dimensional and three-dimensional human eye models. Math. Comput Model. 2008;48:712-720. https://doi.org/10.1016/j.mcm.2007.11.011
Ooi EH, Ng EY. Simulation of aqueous humor hydrodynamics in human eye heat transfer. Comput Biol Med. 2008;38(2):252-62. https://doi.org/10.1016/j.compbiomed.2007.10.007
Rafiq A, Khanday MA. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature. J Therm Biol. 2016;62:138-142. https://doi.org/10.1016/j.jtherbio.2016.06.024
Gokul KC, Gurung DB, Adhikary PR. Thermal effects of eyelid in human eye temperature model. Journal of Applied Mathematics & Informatics. 2014;32(5-6):649-663. https://doi.org/10.14317/jami.2014.649
Narasimhan A, Jha KK. Bio-heat transfer simulation of retinal laser irradiation. Int J Numer Method Biomed Eng. 2012;28(5):547-59. https://doi.org/10.1002/cnm.1489
Truong LTD, Lesniewski PJ, Wedding AB. Heat transfer simulation in laser irradiated retinal tissues. Biomed Phys Eng Express. 2021;8(1). https://doi.org/10.1088/2057-1976/ac3f51
Ooi EH, Ang WT, Ng EY. A boundary element model of the human eye undergoing laser thermokeratoplasty. Computers in Biology and Medicine. 2008;38(6):727-737. https://doi.org/10.1016/j.compbiomed.2008.04.003
Regal S, Troughton J, Delattre R, Djenizian T, Ramuz M. Changes in temperature inside an optomechanical model of the human eye during emulated transscleral cyclophotocoagulation. Biomed Opt Express. 2020;11(8):4548-4559. https://doi.org/10.1364/BOE.385016
Gongal D, Thakur S, Panse A, Pawar R, Yu CQ, Foster CD. Thermal analysis of intraocular electronic display projector visual prosthesis. Numeri Heat Transf A Appl. 2020;78(12):706-716. https://doi.org/10.1080/10407782.2020.1805230
pie NL, Burkitt AN, Meffin H, Grayden DB. Heating of the eye by a retinal prosthesis: modeling, cadaver and in vivo study. IEEE Trans Biomed Eng. 2012;59(2):339-45. https://doi.org/10.1109/TBME.2011.2171961
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 О. С. Задорожний, А. Р. Король, В. О. Науменко, Н. В. Пасєчнікова, Л. Л. Бутенко

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Ця робота ліцензується відповідно до ліцензії Creative Commons Attribution 4.0 International (CC BY). Ця ліцензія дозволяє повторно використовувати, поширювати, переробляти, адаптувати та будувати на основі матеріалу на будь-якому носії або в будь-якому форматі за умови обов'язкового посилання на авторів робіт і первинну публікацію у цьому журналі. Ліцензія дозволяє комерційне використання.
ПОЛОЖЕННЯ ПРО АВТОРСЬКІ ПРАВА
Автори, які подають матеріали до цього журналу, погоджуються з наступними положеннями:
- Автори отримують право на авторство своєї роботи одразу після її публікації та назавжди зберігають це право за собою без жодних обмежень.
- Дата початку дії авторського права на статтю відповідає даті публікації випуску, до якого вона включена.
ПОЛІТИКА ДЕПОНУВАННЯ
- Редакція журналу заохочує розміщення авторами рукопису статті в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах), оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності і динаміці цитування.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження статті у тому вигляді, в якому вона була опублікована цим журналом за умови збереження посилання на первинну публікацію у цьому журналі.
- Дозволяється самоархівування постпринтів (версій рукописів, схвалених до друку в процесі рецензування) під час їх редакційного опрацювання або опублікованих видавцем PDF-версій.
- Самоархівування препринтів (версій рукописів до рецензування) не дозволяється.