Heat exchange in the human eye: a review

Authors

  • O. S. Zadorozhnyy SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"
  • A. R. Korol SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"
  • V. O. Naumenko SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"
  • N. V. Pasyechnikova SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"
  • L. L. Butenko Odesa National Medical Institute

DOI:

https://doi.org/10.31288/oftalmolzh202265058

Keywords:

heat exchange in the eye, ocular surface temperature, heat flux, intraocular temperature, mathematical modeling

Abstract

Thermal homeostasis is required in order to ensure that the normal function of the human body is maintained under various environmental conditions. Various pathological processes impacting metabolism in tissues and organs (e.g., the human eye) are accompanied by changes in relative internal heat balance. Although numerous relevant studies have been conducted, heat exchange processes in the human eye have not been yet sufficiently investigated. Further research on the features of heat exchange in the eye is required not only to improve our knowledge in the field of physiology of the eye, but also to use the data obtained for developing novel advanced techniques for eye disease diagnosis and treatment.

References

Guyton AC, Hall JE. Textbook of Medical Physiology. 11th ed. Amsterdam: Elsevier Saunders; 2006. 890 p.

Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol. 1973;12(8):596-602.

Mayer SA, Sessler VA. Therapeutic Hypothermia. New York: Marcel Dekker; 2005. 402 p. https://doi.org/10.3109/9780203997345

Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin). 2019;6(4):271-333. https://doi.org/10.1080/23328940.2019.1691896

Tsariov А. Target temperature management in clinical practice of intensive care for critical states. Emergency Medicine. 2014;7(62):186-191. https://doi.org/10.22141/2224-0586.7.62.2014.84183

Avetisov SE, Novikov IA, Lutsevich EE, Reyn ES. Use of infrared thermography in ophthalmology. Vestn Oftalmol. 2017;133(6):99 105. https://doi.org/10.17116/oftalma2017133699-104

Martin DK, Fatt I. The presence of a contact lens induces a very small increase in the anterior corneal surface temperature. Acta Ophthalmol (Copenh). 1986;64(5):512-518. https://doi.org/10.1111/j.1755-3768.1986.tb06964.x

Kudinov VA, Kartashov EM, Stefanyuk EV. Technical thermodynamics and heat transfer. Textbook for Academic Baccalaureate. Мoscow: Yurait; 2019. 454 p.

Savvin VN, Korotkova OL, Shishkin GP. The use of thermodynamic approaches in assessing the state of a living system. Vyatka Medical Bulletin. 2017; 2:40-44.

Lucia U. Bioengineering thermodynamics of biological cells. Theor Biol Med Model. 2015;12:29. https://doi.org/10.1186/s12976-015-0024-z

Grischenko TG, Dekusha LV, Vorobiov LY. Heat flow measuring: theory, metrology, practice. Book 1. Methods and means of heat flow measuring. Kiev: Institute of Engineering Thermophysics of NASU; 2017. 438 p.

Mapstone R. Determinants of corneal temperature. Br J Ophthalmol. 1968;52(10):729-41. https://doi.org/10.1136/bjo.52.10.729

Purslow C, Wolffsohn J. The relation between physical properties of the anterior eye and ocular surface temperature. Optom Vis Sci. 2007;84(3):197-201. https://doi.org/10.1097/OPX.0b013e3180339f6e

Emery AF, Kramar P, Guy AW, Lin, JC. Microwave induced temperature rises in rabbit eyes in cataract research. J Heat Transfer. 1975;97(1):123-128. https://doi.org/10.1115/1.3450259

Holmberg A. The temperature of the eye during the application of hot packs, and after milk injections. Acta Ophthalmol (Copenh). 1952;30(4):348-364. https://doi.org/10.1111/j.1755-3768.1952.tb00011.x

Zeiss E. Über Wärmestrahlungsmessungen an der lebenden menschlichen Hornhaut. Arch Augenheilkd. 1930;102:523-550.

Mapstone R. Measurement of corneal temperature. Exp Eye Res. 1968;7(2):237-43. https://doi.org/10.1016/S0014-4835(68)80073-9

Purslow C, Wolffsohn JS. Ocular surface temperature: a review. Eye Contact Lens. 2005;31(3):117-123. https://doi.org/10.1097/01.ICL.0000141921.80061.17

Buiko AS, Tsyikalo AL, Terenteva LS. Liquid crystal thermography in oncoophthalmology. J Ophthalmol (Ukraine). 1977;2:110-114.

Guo S, Wu K, Li C, Wang H, Sun Z, Xi D, Zhang S, Ding W, Zaghloul ME, Wang C, Castro FA, Yang D, Zhao Y. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter. 2021;4(3):969-985. https://doi.org/10.1016/j.matt.2020.12.002

Moreddu R, Elsherif M, Butt H, Vigolo D, Yetisen AK. Contact lenses for continuous corneal temperature monitoring. RSC Adv. 2019;9(20):11433-11442. https://doi.org/10.1039/C9RA00601J

Chang TC, Hsiao YL, Liao SL. Application of digital infrared thermal imaging in determining inflammatory state and follow-up effect of methylprednisolone pulse therapy in patients with Graves' ophthalmopathy. Graefes Arch Clin Exp Ophthalmol. 2008;246(1):45-9. https://doi.org/10.1007/s00417-007-0643-0

Kawasaki S, Mizoue S, Yamaguchi M, Shiraishi A, Zheng X, Hayashi Y, Ohashi Y. Evaluation of filtering bleb function by thermography. Br J Ophthalmol. 2009;93(10):1331-6. https://doi.org/10.1136/bjo.2008.152066

Wang C, Jiao H, Anatychuk L, Pasyechnikova N, Naumenko V, Zadorozhnyy O, Vikhor L, Kobylianskyi R, Fedoriv R, Kochan O. Development of a Temperature and Heat Flux Measurement System Based on Microcontroller and its Application in Ophthalmology. Measurement Science Review. 2022;22(2):73-79. https://doi.org/10.2478/msr-2022-0009

Anatychuk L, Pasyechnikova N, Zadorozhnyy O, Nazaretian R, Myrnenko V, Kobylyanskyi R, Gavrilyuk N. Original device and approaches to the study of temperature distribution in various eye segments (experimental study). J Ophthalmol (Ukraine). 2015;6:50-53. https://doi.org/10.31288/oftalmolzh201565053

Schwartz B, Feller MR. Temperature gradients in the rabbit eye. Invest Ophthalmol. 1962;1:513-21.

Nazaretian RE, Zadorozhnyy OS, Umanets NN, Naumenko VA, Pasyechnikova NV, Shafranskii VV. Intraocular temperature changes during vitrectomy procedure. J Ophthalmol (Ukraine). 2018;6:30-4. https://doi.org/10.31288/oftalmolzh201863034

Iguchi Y, Asami T, Ueno S, Ushida H, Maruko R, Oiwa K, Terasaki H. Changes in vitreous temperature during intravitreal surgery. Invest Ophthalmol. 2014;55(4):2344-9. https://doi.org/10.1167/iovs.13-13065

Mansouri K, Gillmann K, Rao HL, Szurman P, Weinreb RN; ARGOS -2 Study Group. Measurement of intraocular temperature in glaucoma: week-day and seasonal fluctuations. Br J Ophthalmol. 2022;bjophthalmol-2021-320495.

Horven I. Corneal temperature in normal subjects and arterial occlusive disease. Acta Ophthalmol (Copenh). 1975;53(6):863-874.

https://doi.org/10.1111/j.1755-3768.1975.tb00404.x

Alio' J, Padron M. Influence of age on the temperature of the anterior segment of the eye: measurements by infrared thermometry. Ophthalmic Res. 1982;14:153-159. https://doi.org/10.1159/000265187

Martin DK, Fatt I. The presence of a contact lens induces a very small increase in the anterior corneal surface temperature. Acta Ophthalmol (Copenh). 1986;64(5):512-518. https://doi.org/10.1111/j.1755-3768.1986.tb06964.x

Koçak I, Orgül S, Flammer J. Variability in the measurement of corneal temperature using a noncontact infrared thermometer. Ophthalmologica. 1999;213(6):345-349. https://doi.org/10.1159/000027452

Morgan PB, Soh MP, Efron N, Tullo AB. Potential Applications of Ocular Thermography. Optom Vis Sci. 1993;70(7):568-76. https://doi.org/10.1097/00006324-199307000-00008

Craig JP, Singh I, Tomlinson A, Morgan PB, Efron N. The role of tear physiology in ocular surface temperature. Eye (Lond). 2000;14(4):635-641. https://doi.org/10.1038/eye.2000.156

Tan L, Cai ZQ, Lai NS. Accuracy and sensitivity of the dynamic ocular thermography and inter-subjects ocular surface temperature (OST) in Chinese young adults. Cont Lens Anterior Eye. 2009;32(2):78-83. https://doi.org/10.1016/j.clae.2008.09.003

Kamao T, Yamaguchi M, Kawasaki S, Mizoue S, Shiraishi A, Ohashi Y. Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol. 2011;151(5):782-791.e1. https://doi.org/10.1016/j.ajo.2010.10.033

Sodi A, Matteoli S, Giacomelli G, Finocchio L, Corvi A, Menchini U. Ocular surface temperature in age-related macular degeneration. J Ophthalmol. 2014;2014:281010. https://doi.org/10.1155/2014/281010

Abreau K, Callan C, Kottaiyan R, Zhang A, Yoon G, Aquavella JV, Zavislan J, Hindman HB. Temperatures of the ocular surface, lid, and periorbital regions of sjögren's, evaporative, and aqueous-deficient dry eyes relative to normals. Ocul Surf. 2016;14(1):64-73. https://doi.org/10.1016/j.jtos.2015.09.001

Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Gavrilyuk MV, Kobylianskyi RR. A thermoelectric device for ophthalmic heat flux density measurements: results of piloting in healthy individuals. J Ophthalmol (Ukraine). 2019; 3:45-51. https://doi.org/10.31288/oftalmolzh201934551

Matteoli S, Vannetti F, Sodi A, Corvi A. Infrared thermographic investigation on the ocular surface temperature of normal subjects. Physiol Meas. 2020;41(4):045003. https://doi.org/10.1088/1361-6579/ab6b48

Chandrasekar B, Rao AP, Murugesan M, Subramanian S, Sharath D, Manoharan U, Prodip B, Balasubramaniam V. Ocular surface temperature measurement in diabetic retinopathy. Exp Eye Res. 2021;;211:108749. https://doi.org/10.1016/j.exer.2021.108749

Mapstone R. Ocular thermography. Br J Ophthalmol. 1970;54(11):751-4. https://doi.org/10.1136/bjo.54.11.751

Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic behaviour of the cornea during treatment with two excimer laser platforms. Transl Vis Sci Technol. 2021;10(9):27. https://doi.org/10.1167/tvst.10.9.27

Purslow C, Wolffsohn JS, Santodomingo-Rubido J. The effect of contact lens wear on dynamic ocular surface temperature. Cont Lens Anterior Eye. 2005;28(1):29-36. https://doi.org/10.1016/j.clae.2004.10.001

Tan JH, Ng EYK, Acharya UR, Chee C. Infrared thermography on ocular surface temperature: A review. Infrared Phys Techn. 2009;52:97-108. https://doi.org/10.1016/j.infrared.2009.05.002

Rysä P, Sarvaranta J. Corneal temperature in man and rabbit. Observations made using an infra-red camera and a cold chamber. Acta Ophthalmol (Copenh). 1974;52(6):810-6. https://doi.org/10.1111/j.1755-3768.1974.tb01117.x

Petznick A, Tan JH, Boo SK, Lee SY, Acharya UR, Tong L. Repeatability of a new method for measuring tear evaporation rates. Optom Vis Sci. 2013;90(4):366-371. https://doi.org/10.1097/OPX.0b013e318288bdd1

Shah AM, Galor A. Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights. Clin Optom (Auckl). 2021;13:51-62. https://doi.org/10.2147/OPTO.S281601

Morgan PB, Tullo A, Efron N. Infrared thermography of the tear film in dry eye. Eye (Lond). 1995;9:615-618. https://doi.org/10.1038/eye.1995.149

Tan LL, Sanjay S, Morgan PB. Screening for dry eye disease using infrared ocular thermography. Cont Lens Anterior Eye. 2016;39(6):442-449. https://doi.org/10.1016/j.clae.2016.08.004

Matteoli S, Favuzza E, Mazzantini L, Aragona P, Cappelli S, Corvi A, Mencucci R. Ocular surface temperature in patients with evaporative and aqueous-deficient dry eyes: a thermographic approach. Physiol Meas. 2017;38(8):1503-1512. https://doi.org/10.1088/1361-6579/aa78bd

García-Porta N, Gantes-Nuñez FJ, Tabernero J, Pardhan S. Characterization of the ocular surface temperature dynamics in glaucoma subjects using long-wave infrared thermal imaging. J Opt Soc Am A Opt Image Sci Vis. 2019;36(6):1015-1021. https://doi.org/10.1364/JOSAA.36.001015

Giannetto C, Di Pietro S, Falcone A, Pennisi M, Giudice E, Piccione G, Acri G. Thermographic ocular temperature correlated with rectal temperature in cats. J Therm Biol. 2021;102:103104. https://doi.org/10.1016/j.jtherbio.2021.103104

Dorokhova O, Zborovska O, Meng G, Zadorozhnyy O. Temperature of the ocular surface in the projection of the ciliary body in rabbits. J Ophthalmol (Ukraine). 2020;2(493):65-69. https://doi.org/10.31288/oftalmolzh202026569

Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature. 2020;7(4):321-362. https://doi.org/10.1080/23328940.2020.1743605

Baker FC, Waner JI, Vieira EF, Taylor SR, Driver HS, Mitchell D. Sleep and 24 hour body temperatures: a comparison in young men, naturally cycling women and women taking hormonal contraceptives. J Physiol. 2001;530(3):565-574. https://doi.org/10.1111/j.1469-7793.2001.0565k.x

Morgan PB, Soh MP, Efron N. Corneal surface temperature decreases with age. Cont Lens Anterior Eye. 1999;22(1):11-13. https://doi.org/10.1016/S1367-0484(99)80025-3

Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801-10. https://doi.org/10.1016/j.ajo.2008.12.010

Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Zadorozhnyy O. Temperature and heat flux density of the eye surface in healthy individuals with different subfoveal thickness of the choroid. Acta Ophthalmol. 2022;100: S267. https://doi.org/10.1111/j.1755-3768.2022.035

Sigler EJ, Randolph JC. Comparison of macular choroidal thickness among patients older than age 65 with early atrophic age-related macular degeneration and normals. Invest Ophthalmol. 2013;54(9):6307-13. https://doi.org/10.1167/iovs.13-12653

Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Hramenko NI, Kobylianskyi RR. Temperature of and heat flux density from the external ocular surface in diabetic retinopathy patients: a pilot study. J Ophthalmol (Ukraine). 2019;6:3-6.

Sudhalkar A, Chhablani JK, Venkata A, Raman R, Rao PS, Jonnadula GB. Choroidal thickness in diabetic patients of Indian ethnicity. Indian J Ophthalmol. 2015;63(12):912-6. https://doi.org/10.4103/0301-4738.176024

Gugleta K, Orgül S, Flammer J. Is corneal temperature correlated with blood-flow velocity in the ophthalmic artery? Curr Eye Res. 1999;19(6):496-501. https://doi.org/10.1076/ceyr.19.6.496.5286

Galassi F, Giambene B, Corvi A, Falaschi G. Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and colour Doppler imaging in patients with glaucoma. Br. J. Ophthalmol. 2007;91:878-881. https://doi.org/10.1136/bjo.2007.114397

Morgan PB, Smyth JV, Tullo AB, Efron N. Ocular temperature in carotid artery stenosis. Optom Vis Sci. 1999;76(12):850-4. https://doi.org/10.1097/00006324-199912000-00021

Sodi A, Giambene B, Falaschi G, Caputo R, Innocenti B, Corvi A, Menchini U. Ocular surface temperature in central retinal vein occlusion: preliminary data. Eur J Ophthalmol. 2007;17(5):755-9. https://doi.org/10.1177/112067210701700511

Blomqvist A, Engblom D. Neural mechanisms of inflammation-induced fever. Neuroscientist. 2018;24(4):381-399. https://doi.org/10.1177/1073858418760481

Efron N, Brennan NA, Hore J, Rieper K. Temperature of the hyperemic bulbar conjunctiva. Curr Eye Res. 1988;7(6):615-618. https://doi.org/10.3109/02713688809031818

Klamann MK, Maier AK, Gonnermann J, Klein JP, Bertelmann E, Pleyer U. Ocular surface temperature gradient is increased in eyes with bacterial corneal ulcers. Ophthalmic Res. 2013;49(1):52-6. https://doi.org/10.1159/000343774

Mapstone R. Corneal thermal patterns in anterior uveitis. Br J Ophthalmol. 1968;52(12):917-921. https://doi.org/10.1136/bjo.52.12.917

Kawali AA. Thermography in ocular inflammation. Indian J Radiol Imaging. 2013;23(3):281-3. https://doi.org/10.1055/s-0041-1734381

Leshno A, Stern O, Barkana Y, Kapelushnik N, Singer R, Prat DL, Cohen G, Ben-David G, Abrahami D, Huna-Baron R, Skaat A. Ocular surface temperature differences in glaucoma. Eur J Ophthalmol. 2022;32(3):1518-1524. https://doi.org/10.1177/11206721211023723

Zadorozhnyy OS, Guzun OV, Bratishko AIu, Kustrin TB, Nasinnik IO, Korol AR Infrared thermography of external ocular surface in patients with absolute glaucoma in transscleral cyclophotocoagulation: a pilot study. J Ophthalmol (Ukraine). 2018;2:23-28. https://doi.org/10.31288/oftalmolzh/2018/2/2328

Zadorozhnyy OS, Guzun OV, Kustrin TB, Korol AR, Naumenko VA, Pasyechnikova NV. Ocular heat exchange indices in terminal neovascular glaucoma patients with proliferative diabetic retinopathy. J Ophthalmol (Ukraine). 2020;1:10-13. https://doi.org/10.31288/oftalmolzh202011013

Auker CR, Parver LM, Doyle T, Carpenter DO. Choroidal blood flow. I. Ocular tissue temperature as a measure of flow. Arch Ophthalmol. 1982;100(8):1323-6. https://doi.org/10.1001/archopht.1982.01030040301020

Konieczka K, Koch S, Hauenstein D, Chackathayil TN, Binggeli T, Schoetzau A, Flammer J. Effects of the Glaucoma Drugs Latanoprost and Brimonidine on Corneal Temperature. Transl Vis Sci Technol. 2019;8(3):47. https://doi.org/10.1167/tvst.8.3.47

Merté HJ, Schubert E. Thermographische Untersuchungen. Albrecht von Graefes Arch Klin Ophthalmol. 1971;183:47-52. https://doi.org/10.1007/BF00410347

Galassi F, Giambene B, Corvi A, Falaschi G, Menchini U. Retrobulbar hemodynamics and corneal surface temperature in glaucoma surgery. Int Ophthalmol. 2008;28(6):399-405. https://doi.org/10.1007/s10792-007-9160-8

Fujishima H, Toda I, Yagi Y, Tsubota K. Quantitative evaluation of postsurgical inflammation by infrared radiation thermometer and laser flare-cell meter. J Cataract Refract Surg. 1994;20(4):451-4. https://doi.org/10.1016/S0886-3350(13)80183-6

Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Nazaretyan R, Zadorozhnyy O. Prospects of Temperature Management in Vitreoretinal Surgery. Ther Hypothermia Temp Manag. 2021;11(2):117-121. https://doi.org/10.1089/ther.2020.0019

Zadorozhnyy OS, Savin NV, Buiko AS. Improving the technique for controlled cryogenic destruction of conjunctival tumors located in the projection of the ciliary body onto the sclera: A preliminary report. J Ophthalmol (Ukraine). 2018;5:60-65. https://doi.org/10.31288/oftalmolzh201856065

Betney S, Morgan PB, Doyle SJ, Efron N. Corneal temperature changes during photorefractive keratectomy. Cornea. 1997;16(2):158-61. https://doi.org/10.1097/00003226-199703000-00007

Maldonado-Codina C, Morgan PB, Efron N. Thermal consequences of photorefractive keratectomy. Cornea. 2001;20(5):509-515. https://doi.org/10.1097/00003226-200107000-00014

Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic Behavior of the Cornea During Treatment With Two Excimer Laser Platforms. Transl Vis Sci Technol. 2021;10(9):27. https://doi.org/10.1167/tvst.10.9.27

Sniegowski MC, Erlanger M, Olson J. Thermal imaging of corneal transplant rejection. Int Ophthalmol. 2018;38(6):2335-2339. https://doi.org/10.1007/s10792-017-0731-z

May DR, Freedland RJ, Charles S, Wang C, Bakos J. Ocular hypothermia: anterior chamber perfusion. Br J Ophthalmol. 1983;67(12):808-13. https://doi.org/10.1136/bjo.67.12.808

Schwartz B. Environmental temperature and the ocular temperature gradient. Arch Ophthalmol. 1965;74:237-43. https://doi.org/10.1001/archopht.1965.00970040239022

Anatychuk L, Pasyechnikova N, Zadorozhnyy O, Kobylianskyi R, Nazaretyan R, Myrnenko V. Experimental study of intraocular temperature distribution in the rabbit under various environmental conditions. Acta Ophthalmol. 2016;94:S256. https://doi.org/10.1111/j.1755-3768.2016.0267

Horiguchi M, Miyake Y. Effect of temperature on electroretinograph readings during closed vitrectomy in humans. Arch Ophthalmol. 1991;109(8):1127-1129. https://doi.org/10.1001/archopht.1991.01080080087035

Landers MB 3rd, Watson JS, Ulrich JN, Quiroz-Mercado H. Determination of retinal and vitreous temperature in vitrectomy. Retina. 2012;32(1):172-6. https://doi.org/10.1097/IAE.0b013e31821c3ee0

Romano MR, Vallejo-Garcia JL, Romano V, Angi M, Vinciguerra P, Costagliola C. Thermodynamics of vitreoretinal surgery. Curr Eye Res. 2013;38(3):371-4. https://doi.org/10.3109/02713683.2012.745160

Shinoda K, Matsumoto SC, Yagura K, Terauchi G, Shoji T, Yoshikawa Y, Igawa Y, Mizota A, Miyake Y. Intraocular Temperature Distribution in Eyes Undergoing Different Types of Surgical Procedures during Vitreous Surgery. J Clin Med. 2022;11(7):2053. https://doi.org/10.3390/jcm11072053

Scott JA. A finite element model of heat transport in the human eye. Phys Med Biol. 1988;33(2):227-41. https://doi.org/10.1088/0031-9155/33/2/003

Buck B, Lopezcarasa G, Kon Jara VA, Mwanza J, Landers M. Retinal and intravitreal temperature during vitreous surgery. Invest Ophthalmol. 2014;55(13):1932. https://doi.org/10.1167/iovs.13-13065

Taflove A, Brodwin ME. Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye. IEEE Transactions on Microwave Theory and Techniques. 1975;23(11):888-896, https://doi.org/10.1109/TMTT.1975.1128708

Neelakantaswamy PS, Ramakrishnan KP, Microwave-induced hazardous nonlinear thermoelastic vibrations of the ocular lens in the human eye. Journal of Biomechanics. 1979;12(3):205-210. https://doi.org/10.1016/0021-9290(79)90143-X

Lagendijk JJ. A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment. Phys Med Biol. 1982;27(11):1301-11. https://doi.org/10.1088/0031-9155/27/11/001

Flyckt VM, Raaymakers BW, Lagendijk JJ. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels. Phys Med Biol. 2006;51(19):5007-5021. https://doi.org/10.1088/0031-9155/51/19/018

Ng EY, Ooi EH. FEM simulation of the eye structure with bio-heat analysis. Comput Methods Programs Biomed. 2006;82(3):268-76. https://doi.org/10.1016/j.cmpb.2006.04.001

Ng EY, Ooi EH, Archarya UR. A comparative study between the two-dimensional and three-dimensional human eye models. Math. Comput Model. 2008;48:712-720. https://doi.org/10.1016/j.mcm.2007.11.011

Ooi EH, Ng EY. Simulation of aqueous humor hydrodynamics in human eye heat transfer. Comput Biol Med. 2008;38(2):252-62. https://doi.org/10.1016/j.compbiomed.2007.10.007

Rafiq A, Khanday MA. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature. J Therm Biol. 2016;62:138-142. https://doi.org/10.1016/j.jtherbio.2016.06.024

Gokul KC, Gurung DB, Adhikary PR. Thermal effects of eyelid in human eye temperature model. Journal of Applied Mathematics & Informatics. 2014;32(5-6):649-663. https://doi.org/10.14317/jami.2014.649

Narasimhan A, Jha KK. Bio-heat transfer simulation of retinal laser irradiation. Int J Numer Method Biomed Eng. 2012;28(5):547-59. https://doi.org/10.1002/cnm.1489

Truong LTD, Lesniewski PJ, Wedding AB. Heat transfer simulation in laser irradiated retinal tissues. Biomed Phys Eng Express. 2021;8(1). https://doi.org/10.1088/2057-1976/ac3f51

Ooi EH, Ang WT, Ng EY. A boundary element model of the human eye undergoing laser thermokeratoplasty. Computers in Biology and Medicine. 2008;38(6):727-737. https://doi.org/10.1016/j.compbiomed.2008.04.003

Regal S, Troughton J, Delattre R, Djenizian T, Ramuz M. Changes in temperature inside an optomechanical model of the human eye during emulated transscleral cyclophotocoagulation. Biomed Opt Express. 2020;11(8):4548-4559. https://doi.org/10.1364/BOE.385016

Gongal D, Thakur S, Panse A, Pawar R, Yu CQ, Foster CD. Thermal analysis of intraocular electronic display projector visual prosthesis. Numeri Heat Transf A Appl. 2020;78(12):706-716. https://doi.org/10.1080/10407782.2020.1805230

pie NL, Burkitt AN, Meffin H, Grayden DB. Heating of the eye by a retinal prosthesis: modeling, cadaver and in vivo study. IEEE Trans Biomed Eng. 2012;59(2):339-45. https://doi.org/10.1109/TBME.2011.2171961

Published

2025-08-27

How to Cite

1.
Zadorozhnyy OS, Korol AR, Naumenko VO, Pasyechnikova NV, Butenko LL. Heat exchange in the human eye: a review. J.ophthalmol. (Ukraine) [Internet]. 2025 Aug. 27 [cited 2025 Aug. 28];(6):50-8. Available from: https://ua.ozhurnal.com/index.php/files/article/view/319

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.