A novel technique of evisceration or enucleation secondary to trauma, chronic uveitis or uveal melanoma, with permanent and removable fixation of the ocular prosthesis in a musculoskeletal stump

Authors

  • A. P. Maletskyi SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine); Odesa (Ukraine)
  • N. M. Bigun Lviv Regional Clinical Hospital; Lviv (Ukraine)

DOI:

https://doi.org/10.31288/oftalmolzh202253036

Keywords:

PTFE implants, polymer composite implants, musculoskeletal stump, trauma, uveitis, uveal melanoma

Abstract

Background: The state and motility of a cosmetic ocular prosthesis are important.

Purpose: To develop a novel technique of evisceration or enucleation secondary to trauma, chronic uveitis or uveal melanoma, with permanent and removable fixation of the ocular prosthesis in a musculoskeletal stump (MS).

Material and Methods: Group 1 comprised 52 patients with chronic uveitis secondary to trauma and phthisis bulbi who underwent evisceration. After evisceration, a polymer composite implant or a polytetrafluoroethylene (PTFE) implant was used to shape an MS with a hole in it for the pegged prosthesis, and the prosthesis motility in these patients was compared with that in the 13 controls in whom an MS without a hole in it for the pegged prosthesis was shaped. Group 2 comprised 31 patients with uveal melanoma who underwent enucleation with a PTFE implant used to shape an MS with a hole in it. The prosthesis motility in these patients was measured and compared with that in the 100 controls in whom an MS without a hole in it for the pegged prosthesis was shaped.

Results: In patients of group 1, total prosthesis motility at 3 and 12 months improved to 132.50 ± 6.40 and 147.30 ± 6.70, respectively, versus 103.70 ± 18.30 and 103.10 ± 6.00, respectively, in the controls. No implant exposure was observed over the follow-up period. In three patients of group 2, diastasis of the conjunctival margins with implant exposure was observed at the margin of the hole at months 3 and 7, which necessitated implant removal. In patients of group 2, total prosthesis motility in the four meridians at 3 and 12 months was 141.60 ± 14.70 and 142.20 ± 16.10, respectively, versus 106.10 ± 13.00 and 103.70 ± 18.30, respectively, in the controls.

Conclusion: We found that firm fixation of the pegged ocular prosthesis in the MS allowed improving total prosthesis motility in the four meridians at 3 months and 12 months after evisceration, by 28.8о and 44.2о, respectively, and at 3 months and 12 months after enucleation, by 35.5о and 38.5о, respectively.

References

1.Grusha OV, Lutsevich EA, Grusha IaO. [Major principles of treatment of traumatic orbit deformations]. In: [Proceedings of the symposium on the current problems in ophthalmology]. 26-27 Sep, 2003. Moscow, Russia. P.18-9. Russian.

2.Mosiak NA. [Comparative assessment of different methods of shaping a musculoskeletal stump after enucleation: an experimental and clinical study]. Abstract of Thesis for the Degree of Cand Sc (Med). Filatov Institute of Eye Diseases and Tissue Therapy. Odesa, Ukraine; 1989. Russian.

3.Karcioglu ZA. Actinomyces infection in porous polyethylene orbital implant. Graefe's Arch Clin Exp Ophthalmol. 1997 Jul; 235(7): 448-51. https://doi.org/10.1007/BF00947065

4.Anina IeI, Levtiukh VI. [Surgical and therapeutic restoration of vision]. In: [Proceedings of the twelfth symposium in ophthalmology]. June 29 - July 1, 2001, Chernivtsi, Ukraine. p.8. Ukrainian.

5.Vasil'eva SF, Gorgiladze TU, Grachev NN. [Method of enucleation with the formation of a mobile base for the prosthesis]. Oftalmol Zh. 1986;(1):61-2. Russian.

6.Krasilnikova VL, Kovalenko IuD, Iakhnitskaia LK. [Delayed muscoskeletal stump plasty with a composite implant based on aluminum oxide ceramic foam and nanocrystal hydroxyapatite]. In: [Proceedings of the 2nd Congress of the Black Sea Ophthalmological Society]. 8-10 Sep, 2004. Odesa, Ukraine. p.145. Russian.

7.Bigun NM. [New surgical approaches and implant materials in reconstructive surgery in the orbital and periorbital area: experimental and clinical studies]. Thesis for the Degree of Cand Sc (Med). Filatov Institute of Eye Diseases and Tissue Therapy. Odesa, Ukraine; 2019. Ukrainian.

8.Accuracy of diagnosis of choroidal melanomas in the Collaborative Ocular Melanoma Study. COMS report no. 1. Arch Ophthalmol. 1990 Sep;108(9):1268-73. https://doi.org/10.1001/archopht.1990.01070110084030

9.Gundorova RA, Khoroshilova-Maslova IP, Bykov VP, et al. [Experimental and morphological results of implantation of carbon felt in plastic surgery of the locomotor stump and accessory system of the eye]. Vestnik Oftalmologii. 1996; 1: 27-31. Russian.

10.Maletskyi AP, Samchenko IuM, Vit VV, Bigun NM, Kernosenko LO. [Response of orbital and auricular soft tissues to the developed hydrogel implant in rabbits]. Arkhiv oftalmologii Ukrainy. 2018;6(2):20-7. Ukrainian. https://doi.org/10.22141/2309-8147.6.2.2018.172220

11.Simchuk IV. [Analysis of results of surgical treatment and ocular prosthesis after evisceronucleation]. Arkhiv oftalmologii Ukrainy. 2016;4(1):72-80. Ukrainian. https://doi.org/10.22141/2309-8147.4.1.2016.172879

12.Kaltreider SA, Newman SA. Prevention and management of complications associated with the hydroxyapatite implant. Ophthalmic Plast Reconstr Surg. 1996 Mar; 12 (1):18-31. https://doi.org/10.1097/00002341-199603000-00004

13.Hopper RH Jr, Engh CA, Fowlkes LB, Engh CA. The pros and cons of polyethylene sterilization with gamma irradiation. Clin Orthop Relat Res. 2004 Dec;(429):54-62. https://doi.org/10.1097/01.blo.0000150112.34736.82

14.Jordan D R, Klapper SR. Wrapping hydroxyapatite implants. Ophthalmic Surg Lasers. 1999; 30 (5): 403-407. https://doi.org/10.3928/1542-8877-19990501-14

15.Jordan DR, Gilberg S, Bawazeer A. Coralline hydroxyapatite orbital implant (bio-eye): experience with 158 patients. Ophthalmic Plast Reconstr Surg. 2004 Jan;20(1):69-74. https://doi.org/10.1097/01.IOP.0000105566.71251.D9

16.Maletskyi AP. [A method of shaping a hole in the musculoskeletal stump in patients after evisceration secondary to trauma and slow uveitis]. Patent of Ukraine № 46980 A61F 2/14. Information Bulletin No.1 issued Jan 11, 2010. Ukrainian.

17.Dubkova VI, Glinnik AV, Maletskyi AP, Maievskaia OI, Bigun NM. [Carbon-fiber composite material for soft tissue defect repair]. Patent of Belarus № 121881 issued Jan 29, 2018. Russian.

18.Bigun NM, Maletskyi AP, Melnichenko LM, Makarova IV, Demidova LV. [A method of comparing the peg of the ocular prosthesis with a hole in the musculoskeletal stump in patients after evisceration or enucleation secondary to trauma, slow uveitis or intraocular neoplasm]. Patent of Ukraine № 135224 A 61F 2/00. Information Bulletin No.12 issued Jun 25, 2019. Ukrainian.

19.Pasyechnikova NV, Maletskyi AP, Naumenko VO, Poliakova SI, Chebotariov EP, Pukhlik ES. [Use of high-frequency electric welding in enucleation for uveal melanoma]. In: [Proceedings of the 12th Congress of Ukrainian ophthalmologists]. 26-28 May, 2010. Odesa, Ukraine. p.22. Russian.

20.Maletskyi AP. [A method of shaping a hole in the musculoskeletal stump in patients after enucleation]. Patent of Ukraine № 46980 A61F 2/14. Information Bulletin No.1 issued Jan 11, 2010. Ukrainian.

21.Maletskyi AP, Bushuieva NM, Chebotariov EP. [Ocular prosthesis]. Patent of Ukraine № 11682 A61F 2/14. Information Bulletin No.1 issued Jan 16, 2006. Ukrainian.

22.Maletskyi AP, Dubkova VI, Maievska OI, Bigun NM. [Application of polymer composite materials in shaping a musculoskeletal stump after evisceration: Preliminary results]. Oftalmol Zh. 2013;(6):57-61. Russian.

Published

2025-08-27

How to Cite

1.
Maletskyi AP, Bigun NM. A novel technique of evisceration or enucleation secondary to trauma, chronic uveitis or uveal melanoma, with permanent and removable fixation of the ocular prosthesis in a musculoskeletal stump. J.ophthalmol. (Ukraine) [Internet]. 2025 Aug. 27 [cited 2025 Aug. 28];(5):30-6. Available from: https://ua.ozhurnal.com/index.php/files/article/view/327

Issue

Section

Clinical Ophthalmology

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.