Changes in visual abnormalities after endonasal endoscopic surgery for giant pituitary adenoma with extension to the ventricular system
DOI:
https://doi.org/10.31288/oftalmolzh202416166Keywords:
Giant pituitary adenoma, age-related macular degeneration, position of the chiasm, compressive optic neuropathy, homonymous hemianopsia, endoscopic transnasal surgeryAbstract
Purpose: To assess the features of visual impairments in patients with giant pituitary adenoma (GPA) with extension to the ventricular system showing different directions of tumor growth and chiasm positions to improve the early diagnosis of the chiasmal syndrome.
Material and Methods: We retrospectively examined medical records of 41 patients with GPA showing extension to the ventricular system who were treated at the Endonasal Neurosurgery Department, the Romodanov Neurosurgery Institute between 2016 and 2021. Patients were divided into three groups based on the direction of tumor extension and chiasm position: group 1, antesellar extension and/or postfixed chiasm (14 patients); group 2, suprasellar extension and/or normal chiasm (12 patients); group 3, retrosellar extension and/or prefixed chiasm (15 patients). Patients underwent clinical neurological, otoneurological and eye examination.
Results: Of the 41 patients, 38 (92.7%) had reduced visual acuity and/or or visual field defects. In the current study, 53.7% of patients had nonfunctional GPA, which makes diagnosis in the early stages (when the tumor is small) challenging. Bitemporal hemianopsia and severe chiasmal syndrome were prevalent among patients with normal or postfixed chiasm, and 14% of eyes were blind among these patients. Moderate chiasmal syndrome was prevalent, 1.2% of eyes were blind and 7.3% of patients had no visual deficiency among patients with prefixed chiasm. In addition, homonymous hemianopsia was found in 7 patients (17.5%) with prefixed chiasm, and was caused by the effect on the posterior chiasm and visual pathways. Mean visual acuity and visual field mean defect (MD) values were statistically significantly better in patients with post-fixed or normal chiasm.
Conclusion: Visual field defects atypical for tumors of the chiasmal and sellar region may emerge depending on the topographic relationship between the chiasm and the GPA.
References
Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004;101(3):613-9. https://doi.org/10.1002/cncr.20412
Mete O., Lopes M.B. Overview of the 2017 WHO Classification of Pituitary Tumors. Endocr Pathol. 2017;28:228-43. https://doi.org/10.1007/s12022-017-9498-z
Ren-Wen Ho, Huang Hsiu-Mei, Jih-Tsun Ho. The Influence of Pituitary Adenoma Size on Vision and Visual Outcomes after Trans-Sphenoidal Adenectomy: A Report of 78 Cases. Korean Neurosurg Soc. 2015; 57(1): 23-31. https://doi.org/10.3340/jkns.2015.57.1.23
Yasargil M.G. Microsurgery Applied to Neurosurgery. Stuttgart: Thieme, 1969.
Knosp E., Steiner E., Kitz K., Matula C. Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery. 1993; 33(4):610-7; discussion 617-8. https://doi.org/10.1227/00006123-199310000-00008
Kovacs K., Horvath E. Tumors of the pituitary gland. Atlas of Tumor Pathology, series 2, vol. 21. Washington: Armed Forces Institute of Pathology, 1986. https://doi.org/10.1097/00055735-200312000-00002
Mohr G., Hardy J., Comtois R., Beauregard H. Surgical management of giant pituitary adenomas. Can J Neurol Sci. 1990;17(1):62-6. https://doi.org/10.1017/S0317167100030055
Mortini P., Barzaghi R., Losa M., Boari N., Giovanelli P. Surgical treatment of giant pituitary adenomas: strategies and results in a series of 95 consecutive patients. Neurosurgery. 2007; 60(6):993-1002. https://doi.org/10.1227/01.NEU.0000255459.14764.BA
Fisher B.J., Gasper L.E., Noone B. Giant pituitary adenomas: role of radiotherapy. Int J Radiat Oncol Biol Phys. 1993;25(4):677-81. https://doi.org/10.1016/0360-3016(93)90015-N
Goel A., Nadkarni T., Muzumdar D., Desai K., Phalke U., Sharma P. Giant pituitary tumors: a study based on surgical treatment of 118 cases. Surg Neurol. 2004 May;61(5):436-45; discussion 445-6. https://doi.org/10.1016/j.surneu.2003.08.036
Krisht A.F. Giant invasive pituitary adenomas: management plan. Contemp Neurosurg. 1999;21:1-6.
Symon L., Jakubowski J., Kendall B. Surgical treatment of giant pituitary adenomas. J Neurol Neurosurg Psychiatry. 1979;42(11):973-82. https://doi.org/10.1136/jnnp.42.11.973
Asa SL, Mete O, Perry A, Osamura RY. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol. 2022 Mar;33(1):6-26. Epub 2022 Mar 15. https://doi.org/10.1007/s12022-022-09703-7
Colao A., Di Somma C., Pivonello R., Faggiano A., Lombardi G., Savastano S.Medical therapy for clinically non-functioning pituitary adenomas. Endocr Relat Cancer. 2008;88(3):905-15. https://doi.org/10.1677/ERC-08-0181
Sivakumar W., Chamoun R., Nguyen V., Couldwell W.T.Incidental pituitary adenomas. Neurosurg Focus.2011;31(6):E18. https://doi.org/10.3171/2011.9.FOCUS11217
Jaffe C.A. Clinically non-functioning pituitary adenoma. Pituitary. 2006; 9(4):317-21. https://doi.org/10.1007/s11102-006-0412-9
Rhoton AL Jr. The sellar region. Neurosurgery. 2002;51(4 Suppl):S335-74. PMID: 12234453 https://doi.org/10.1097/00006123-200210001-00009
Griessenauer CJ, Raborn J, Mortazavi MM, Tubbs RS, Cohen-Gadol AA. Relationship between the pituitary stalk angle in prefixed, normal, and postfixed optic chiasmata: an anatomic study with microsurgical application. Acta Neurochir (Wien). 2014;156:147-51. https://doi.org/10.1007/s00701-013-1944-1
Schiefer U, Isbert M, Mikolaschek E, Mildenberger I, Krapp E, Schiller J, Thanos S, Hart W. Distribution of scotoma pattern related to chiasmal lesions with special reference to anterior junction syndrome. Graefes Arch Clin Exp Ophthalmol. 2004;242(6):468-77. https://doi.org/10.1007/s00417-004-0863-5
Alleyne C.H. Jr., Barrow D.L., Oyesiku N.M. Combined transsphenoidal and pterional craniotomy approach to giant pituitary tumors. Surg Neurol 2002;57(6):380-90. https://doi.org/10.1016/S0090-3019(02)00705-X
Solari D., Cavallo L.M., Graziadio C., Corvino S., Bove I., Esposito F., Cappabianca P. Giant Non-Functioning Pituitary Adenomas: Treatment Considerations. Brain Sci. 2022 Sep 16;12(9):1256. https://doi.org/10.3390/brainsci12091256
Abouaf L., Vighetto A., Lebas M. Neuro-ophthalmologic exploration in non-functioning pituitary adenoma. Annals of Endocrinology. 2015;76(3):210-9. Epub 2015 Jun 10. https://doi.org/10.1016/j.ando.2015.04.006
Nishimura M, Kurimoto T, Yamagata Y, Ikemoto H, Arita N, Mimura O. Giant pituitary adenoma manifesting as homonymous hemianopia. Jpn J Ophthalmol. 2007 Mar-Apr;51(2):151-3. Epub 2007 Apr 6. PMID: 17401630. https://doi.org/10.1007/s10384-006-0419-9
Gaillard S., Adeniran S., Villa C., Jouinot A., Raffin-Sanson M.L., Feuvret L., Verrelle P., Bonnet F., Dohan A., Bertherat J., Assié G., Baussart B. Outcome of giant pituitary tumors requiring surgery. Front Endocrinol (Lausanne). 2022 Aug 29;13:975560. https://doi.org/10.3389/fendo.2022.975560
Chen Y., Xu X., Cao J., Jie Y., Wang L., Cai F., Chen S., Yan W., Hong Y., Zhang J., Wu Q. Transsphenoidal Surgery of Giant Pituitary Adenoma: Results and Experience of 239 Cases in A Single Center. Front Endocrinol (Lausanne). 2022 May 6;13:879702. https://doi.org/10.3389/fendo.2022.879702
SaadM., Nageeb A., Ahmed T., Taha N., Serag S. Giant invasive pituitary adenomas: surgical approach selection paradigm and its influence on the outcome-case series. Egyptian Journal of Neurosurgery. 2023; 38(1). https://doi.org/10.1186/s41984-023-00214-z
Jamaluddin M.A., Patel B.K., George T., Gohil J.A., Biradar H.P., Kandregula S., Hv E., Nair P. Endoscopic Endonasal Approach for Giant Pituitary Adenoma Occupying the Entire Third Ventricle: Surgical Results and a Review of the Literature. World Neurosurg. 2021 Oct;154:e254-e263. Epub 2021 Jul 20. https://doi.org/10.1016/j.wneu.2021.07.022
Gnanalingham K.K., Bhattacharjee S., Pennington R., Ng J., Mendoza N. The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: predictive factors for a good outcome. J Neurol Neurosurg Psychiatry. 2005; 76(3):415-9. https://doi.org/10.1136/jnnp.2004.035576
Foroozan R. Chiasmal syndromes. Curr. Opin. Ophthalmol. 2003; 14(6):325-31. https://doi.org/10.1097/00055735-200312000-00002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Iegorova K. S., Ukrainets O. V., Guk M. O.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) that allows users to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author as long as they cite the source.
COPYRIGHT NOTICE
Authors who publish in this journal agree to the following terms:
- Authors hold copyright immediately after publication of their works and retain publishing rights without any restrictions.
- The copyright commencement date complies the publication date of the issue, where the article is included in.
DEPOSIT POLICY
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) during the editorial process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work with an acknowledgement of its initial publication in this journal.
- Post-print (post-refereeing manuscript version) and publisher's PDF-version self-archiving is allowed.
- Archiving the pre-print (pre-refereeing manuscript version) not allowed.