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Introduction
Transscleral cyclophotocoagulation (TSCPC) 

techniques have been increasingly used for cyclodestruction 
in the treatment of secondary neovascular glaucoma [1]. 
The use of this approach in patients with preserved visual 
function is, however, limited due to insufficiently selective 
laser effects on the structures of the ciliary body. The risk 
of excessive damage to the ciliary body and surrounding 
tissue substantially increases with the application of high 
laser energy settings for TSCPC [2, 3]. In a study by 
Alabduljabbar and colleagues [4], TSCPC was used for 
the treatment of neovascular glaucoma, with the starting 
power set at 1500 mW for 1500 ms and gradually increased 
until soft “pops” were heard during treatment. Others [5], 
however, used a higher power of the diode laser (laser 
power, 1.5–2 W; exposure time per burn, 2 s), which can 
be accompanied by additional damage to the ocular tissue.

Most authors prefer performing TSCPC with a 810-nm 
diode laser, whereas others advocate for 1064-nm Nd:YAG 
laser [6, 7]. Discussion is still going on the advantages of 

different types of laser for TSCPC, efficacy of techniques 
for the transscleral laser exposure, and laser energy settings 
for performing transscleral cyclodestructive procedures.

With the TSCPC, radiant energy from a 1064-nm or 
810-nm infrared laser is absorbed by melanin granules 
of ciliary pigment epithelium, but the 810-nm diode 
wavelength is absorbed better by melanin than the 1064 
nm Nd:YAG wavelength [8-10]. Consequently, the 810-
nm diode wavelength has an advantage with regard to less 
energy required for TSCPC when compared to the 1064 
nm Nd:YAG wavelength. However, scleral transmission 
is better and light backscattering is lower at the 1064 nm 
Nd:YAG wavelength than at the 810-nm diode wavelength. 
In addition, in TSCPC, dosed scleral compression 
additionally increases scleral penetration by laser and 
enables reducing the energy of laser exposure [11, 12].
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We have previously demonstrated that experimental 
transscleral contact-and-compression (TSCC) CPC 
with a 1064-nm Nd:YAG laser at an energy of 1.2J 
resulted in subconjunctival tissue and scleral damage 
and disorganization of stromal collagen fibers along the 
direction of laser radiation with the formation of a canal, 
and was accompanied by extensive detachment of the 
ciliary epithelium [13]. Our subsequent experimental study 
[3] on TSCPC with an 810-nm diode laser demonstrated 
that an increase in laser energy to 3 J not only caused 
coagulative necrotic lesions (detritus of pigment epithelial 
cells and loss of structure in non-pigmented cells in the 
ciliary body) but also damage to ciliary and scleral stroma.

Given the findings of our previous studies, we 
hypothesized that a reduction in laser energy in TSCPC 
with either of the types of laser (i.e., an 810-nm diode 
laser or an 1064-nm Nd:YAG laser) will result in selective 
and controlled damage to the ciliary body at the level of 
pigmented and non-pigmented epithelium), with a reduced 
risk of damage to surrounding tissues in the course of laser 
cyclodestruction and preservation of the therapeutic effect 
of the latter [14].

Therefore, the purpose of this experimental study 
was to evaluate the histopathological features in the rabbit 
eye after exposure of the distal ciliary body to transscleral 
selective laser radiation at the 810 nm wavelength 
versus the 1064 nm wavelength, and to compare the 
histopathological effects of the diode and Nd:YAG lasers.

Material and Methods
All animal experiments were performed in compliance 

with the Law of Ukraine on Protection of Animals from 
Cruel Treatment No. 3447-IV dated February 21, 2006 
and European Convention for the Protection of Vertebrate 
Animals Used for Experimental and Other Scientific 
Purposes from the European Treaty Series (Strasbourg, 
1986), and approved by a local Bioethics Committee of SI 
“The Filatov Institute of Eye Diseases and Tissue Therapy 
of the National Academy of Medical Sciences of Ukraine” 
(Meeting Minutes No. 4 dated July 9, 2024).

Four Chinchilla rabbits (8 eyes) were included in this 
experimental study. In four eyes, transscleral ciliary body 
coagulation was performed with an 1064-nm Nd:YAG 
laser (energy, 1.0 J/ pulse; pulse duration, 3 ms) equipped 
with a 600-µm fused-silica fiber optic tip for dosed scleral 
compression. In another four eyes, an 810-nm diode 
laser TSCPC was applied using a fiber optic G-probe 
connected to the Vitra 810 (Quantel Medical Instruments, 
Cournon d’Auvergne Cedex, France), and  was performed 
with a laser power of 1,000 mW and exposure duration 
of 1.5 s (corresponding to an energy of 1.5 J/pulse). 
Epibulbar conjunctiva was anesthetized with three drops 
of 0.4% oxybuprocaine, and one milliliter 2% lidocaine 
hydrochloride was administered retrobulbarly. The probe 
was placed 1.5-2 mm from the limbus and held parallel to 
the visual axis. At average, 20 laser spots were applied over 
180 degrees. The TSCC CPC with a 1064-nm Nd:YAG 
laser included scleral compression by the waveguide face.

Histology was performed at the Pathology and 
Electronic Microscopy Laboratory of SI “The Filatov 
Institute of Eye Diseases and Tissue Therapy of the 
National Academy of Medical Sciences of Ukraine”. Ten 
days after TSCPC, 273 histological sections were prepared 
and stained with hematoxylin-eosin, and their images were 
taken at magnifications of 70× 100×, 180×, 200× and 400×, 
and included in the analysis. Histological changes, which 
are not typically seen in normal rabbit globes, were scored 
as present or absent in each section, and the percentage of 
total sections involved was calculated. Sections missing 
the ciliary epithelium were excluded from the analysis. The 
most common histopathological features were included in 
the analysis, and the two groups of eyes (subjected to the 
810-nm diode laser and the 1064-nm Nd:YAG laser) were 
compared for these features.

Statistical analyses were conducted using Statistica 
10.0 (StatSoft, Tulsa, OK, USA) software. Quantitative 
data were evaluated for normality using the Shapiro-
Wilk test. Data are presented graphically as percentages. 
Fisher’s exact test was used to analyze a 2 x 2 feature 
contingency table for the significance of difference 
between the two used lasers. The level of significance p ≤ 
0.05 was assumed. The Cramer’s V test was used to assess 
the strength of associations between the CPC with a 1064-
nm Nd:YAG laser and the CPC with an 810-nm diode laser 
and histological features in the ciliary body.

Results
Ten days after TSCPC, 125 and 148 ocular tissue 

sections containing ciliary epithelial cells were prepared 
from the eyes of the rabbits that received TSCPC with 
a 1064-nm Nd:YAG laser and an 810-nm diode laser, 
respectively, and included in the analysis.

The most common histological features observed and 
analyzed in histological sections after TSCPC with either 
laser type were as follows: (1) ciliary stromal edema; (2) 
focal necrosis of the non-pigmented ciliary epithelium; (3) 
destruction and focal necrosis of the pigmented and non-
pigmented ciliary epithelium; and (4) separation of the 
pigmented ciliary epithelium from the stroma.

Detachment and destruction of the non-pigmented 
ciliary epithelium, homogenized stroma and destruction 
of a portion of the ciliary processes were seen in most 
sections prepared from the eyes subjected to TSCPC with 
an 1064-nm Nd:YAG laser (energy, 1.0 J/ pulse) (Fig. 1). 
The iris root was swollen, a portion of the epithelial cells 
of its posterior surface appeared necrotic, and the stromal 
cells appeared loose. Destruction of the iris pigment 
epithelium was noted (Fig. 1A). At some locations, not 
only the ciliary stroma was edematous, but the detachment 
of the pigmented ciliary epithelium with formation of 
vacuole-like structures, and accumulation of homogenous 
protein-containing inclusions at the anterior chamber 
angle between ciliary processes was observed (Fig. 1B).

In the sections obtained from the eyes subjected to 
TSCPC with a 810-nm diode laser (energy, 1.5 J/ pulse), 
there was ciliary stromal edema, but more common findings 
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included destruction of the pigmented and non-pigmented 
ciliary epithelium and edema and pigment lumps in the 
ciliary stroma (Fig. 2A). In addition, we observed the 
destruction and focal necrosis of the pigmented and 
non-pigmented ciliary epithelium, and separation of the 
pigmented ciliary epithelium from the stroma (Fig. 2B).

However, evidence of collagen coagulation and ciliary 
stromal and scleral destruction at the site of laser exposure 
and surrounding tissues was common in our previous 
study [3] after laser exposure with higher pulse energy, but 
not in the current study.

After exposure to either of the two lasers, histological 
evaluation found ciliary stromal changes, mostly of 
a reactive nature (edema, vacuolation and abnormal 
microcirculation), which were not associated with the use 
of a laser of any wavelength. In addition, after exposure 
to either of the two lasers, isolated histological sections 
exhibited collagen coagulation and ciliary stromal 
destruction, likely due to repeated exposure of the same 
site. No full-thickness destruction of the ciliary epithelium 
was observed, which is in agreement with findings of 
others [15-17] on diode laser TSCPC performed with 
conventional energy settings.

Fig. 3 shows the percentages of sections showing 
histological features, and Table 1 compares four histologic 
outcomes between two treatment conditions (1064-nm 
laser and 810-nm laser). 

Fisher’s exact test showed no significant differences in 
the development of ciliary stromal edema (р = 0.425) and 
focal necrosis of the non-pigmented ciliary epithelium (р 
= 0.764) between the 810-nm and 1064-nm laser exposure 
groups. The rate of destruction and focal necrosis of the 
pigmented and non-pigmented ciliary epithelium and the 
rate of separation of the pigmented ciliary epithelium from 
the stroma, were, however, higher in the former group 
(83.7% versus 72% and 73.5% versus 61.6%, respectively), 
with the differences between the groups being significant 
(p = 0.026 and p = 0.038, respectively).

The Cramer’s V test was used to assess the strength 
of associations of the wavelength of laser used for 
cyclodestruction with the destruction and focal necrosis 
of the pigmented and non-pigmented ciliary epithelium 
and the separation of the pigmented ciliary epithelium 
from the stroma. There was a weak association between 
the wavelength of laser used for cyclodestruction and the 
destruction and focal necrosis of the pigmented and non-
pigmented ciliary epithelium (Cramer’s V value = 0.141) and 
between the wavelength of laser used for cyclodestruction 
and the detachment of the pigmented ciliary epithelium 
from the stroma (Cramer’s V value = 0.127).

Discussion
Not only the selection of laser wavelength but also the 

specific laser settings (power and duration) are important 
in transscleral cyclodestruction treatment with laser for 
refractory glaucoma. Audible “pops” are now believed 
to indicate overtreatment, and their presence can be used 
to quantify laser parameters and that the maximum level 

of energy used should be slightly below the threshold 
required to produce said “pops” [18].

A disadvantage of TSCPC is limited selectivity of 
the target tissue (the ciliary body) which may cause 
damage to the surrounding structures and complications. 
TSCPC is associated with a risk of complications like 
pain, conjunctival burns, scleral thinning, long-germ 
inflammation and hyphema [14; 19-23], and rarely causes 
serious complications like chronic hypotony, choroidal 
detachment, choroiditis, retinal detachment, scleral 
perforation and phtithis bulbi [24 - 27]. Conjunctival 
burns have been reported in up to 80% of patients 
undergoing TSCPC [28]. Pupillary distortion, disturbed 
accommodation, cystoids macular edema have been also 
reported in TSCPC, affecting treatment outcomes in eyes 
with preserved visual function [29].

Factors impacting the selection of laser wavelength 
for TSCPC include the type of glaucoma, history of prior 
treatment, visual potential, the surgeon's and patient's 
preferences, and the potential for success. Unfortunately, 
the literature lacks studies on the analysis of ocular 
histology after Nd:YAG laser CPC versus diode laser CPC.

Recently, there has been an increase in studies on the 
use of a diode laser to perform TSCPC. The wavelength of a 
diode laser (810 nm) is worse transmitted by the sclera, but 
better absorbed by melanocytes from the secreting ciliary 
epithelium compared to the wavelength of the Nd:YAG 
laser (1064 nm) [11]. In a rabbit study on TSCPC by 
Brancato and colleagues [30], gross examination revealed 
threshold lesions at 1 J energy for the Nd:YAG laser and 
0.8 J for the diode laser. The histologic and ultrastructural 
study showed that diode laser radiation produced more 
remarkable damage to the ciliary pigmented structures, 
causing deep coagulation necrosis of the pigmented 
epithelium, wide disorganization of the collagen in the 
stroma, and intravascular coagulation phenomena in the 
ciliary vessels [30]. In our previous study [14], at the 
12-month follow-up, the Nd:YAG laser TSCPC (1064 nm; 
power, 1.0 J) was as effective as the diode laser TSCPC 
(810 nm; power, 1.5 J) in the management of painful 
neovascular glaucoma (NVG) associated with proliferative 
diabetic retinopathy. The Nd:YAG laser TSCPC resulted 
in a reduction in intraocular pressure (IOP) to ≤ 21 mmHg 
at month 12 in 75%, and diode laser TSCPC, in 77% of 
patients with diabetic NVG. The rate of side effects was 
higher for eyes treated with the diode laser TSCPC than for 
those treated with the Nd:YAG laser TSCPC  (71% versus 
33%, p = 0.004). Inflammation was the most common 
complication in both groups, but was significantly less 
common in eyes treated with the Nd:YAG laser TSCPC 
than in those treated with the diode laser TSCPC (20% 
versus 46%, p = 0.03) [14]. Our findings are in agreement 
with those by Brancato and colleagues [30].

In the current histopathological study, on day 10 
after TSCPC, there was no significant differences in the 
percentage of sections that showed ciliary stromal edema 
(р = 0.425) and focal necrosis of the non-pigmented 
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ciliary epithelium (р = 0.764) between the group treated 
with the diode laser TSCPC (power, 1.5 J) and the group 
treated with the Nd:YAG laser TSCPC (power, 1.0 J). The 
rate of destruction and focal necrosis of the pigmented 
and non-pigmented ciliary epithelium and the rate of 
separation of the pigmented ciliary epithelium from the 
stroma, were, however, higher in the former group (83.7% 
versus 72% and 73.5% versus 61.6%, respectively), with 
the differences between the groups being significant 
(p = 0.026 and p = 0.038, respectively). The post-hoc 
analysis, however, showed a weak association between 
the wavelength of laser used for cyclodestruction and the 
destruction and focal necrosis of the pigmented and non-
pigmented ciliary epithelium (Cramer’s V value = 0.141) 
and the separation of the pigmented ciliary epithelium 
from the stroma (Cramer’s V value = 0.127); this indicates 
similarity in the pattern of ciliary lesions at the used laser 
settings between the groups. Assia and colleagues [31] 
investigated the cyclodestructive effects of the Nd:YAG 
laser TSCPC and diode laser TSCPC in cadaver eyes. 
Histologic changes using both lasers were coagulation 
necrosis with fragmentation and detachment of the ciliary 
body epithelium, which is in agreement with our study. 
Assia and colleagues [31] also noted that laser TSCPC 
“may have a minimum acute effect on lens structures when 
done clinically with the usual parameters” (i.e., using 4 J 
of energy for the Nd:YAG and 1.2 J for the diode laser). 
In the current study, while using conventional approaches 
to the dosage of laser energy, we did not observe other 
gross changes (collagen coagulation, destruction of the 
ciliary stroma, and full-thickness destruction of ciliary 
epithelium) noted by others [16]. This also confirms our 
hypothesis that, in order to reduce the rate of complications 
of transscleral laser cyclodestruction, it is reasonable 
to review the current conventional approaches to the 
selection of diode laser energy settings and favor low laser 
energy settings that enable selective effects on the ciliary 
epithelium.

Conclusion
Our experimental histopathological study of rabbit 

eyes demonstrated no significant difference in the 
development of ciliary stromal edema (р = 0.425) and 
focal necrosis of the non-pigmented ciliary epithelium (р 

= 0.764) between the eyes that received the transscleral 
contact cyclodestruction with an 810-nm diode laser at 
an energy of 1.5 J and the eyes that received transscleral 
contact-and-compression cyclodestruction with a 1064-
nm Nd:YAG laser at en energy of 1.0 J. The use of 810-nm 
laser radiation at energy of 1.5 J in the transscleral contact 
cyclodestruction the use of 1064-nm laser radiation at 
energy of 1.0 J in the transscleral contact-and-compression 
cyclodestruction were similar in enabling selective thermal 
effects on the ciliary epithelium with limited damage to 
adjacent structures in rabbits.
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Fig. 1. Microscopic images of rabbit ocular tissue sections showing the effects of ciliary exposure to 1064-nm laser radiation 
at energy of 1.0 J. A: Ciliary stromal edema and focal necrosis of non-pigmented ciliary epithelium (arrow). Hematoxylin and 
eosin staining. Magnification, x70. B: Destruction and separation of non-pigmented ciliary epithelium with formation of cyctoid 
structures (arrow). Hematoxylin and eosin staining. Magnification, x180

Fig. 2. Microscopic images of rabbit ocular tissue sections showing the effects of 810-nm laser radiation at energy of 1.5 J 
(1000 mW/1.5 s) in the superior portion of the projection of the ciliary body. A: Destructive lesion of the pigmented and non-
pigmented ciliary epithelium (arrow). Numerous destructed pigment lumps, marked dispersion of pigment lumps within ciliary 
process stroma (with effect of pigment loss indicated by arrow) and ciliary body edema. Hematoxylin and eosin staining. 
Magnification, x100. B: Moderate destruction of ciliary process epithelium with pigment dispersion on its surface, and non-
pigmented epithelium is preserved in some areas. Hematoxylin and eosin staining. Magnification, x100.
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Fig. 3. Percentages of sections exhibiting particular histological features in the ciliary body for the 1064-nm laser exposure 
group versus the 810-nm laser exposure group


