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Photobiomodulation (PBM) therapy is a form of 
light therapy that utilizes non-ionizing forms of light 
sources, including lasers, light-emitting diodes, and 
broadband light, in the visible and infrared spectrum. It is a 
nonthermal process involving endogenous chromophores 
eliciting photophysical (i.e., linear and nonlinear) and 
photochemical events at various biological scales [1].

The term PBM combines some medical approaches to 
light application, previously referred to by other names 
(phototherapy, photobiostimulation, low-intensity laser 
therapy, low-level laser therapy, and laser stimulation).

PBM uses mostly light in the far-red to near-infrared 
light spectrum (600 to 1,000 nm).

The healing effect of the red light has been well-known 
since ancient times [2]. The utility of red light appears to be 
“re-discovered” at the end of the 19th century by Finsen who 
later became to be known as the “father of contemporary 
phototherapy” for his astonishing achievements of curing 
skin disorders using red light. These successes won him 
the 1903 Nobel Prize in Medicine and Physiology [3]. 
New opportunities for treatment applications of far red 
and near IR light appeared after the invention of the laser 
in the 1960s. This was due to an unexpected study results 
when Mester and colleagues found that 694 nm ruby laser 
radiation caused accelerated fur growth in mice compared 
to a control group that didn't receive laser light exposure 
[4]. It was the first documented demonstration of laser 
stimulation.

 Mester and colleagues later used a He-Ne laser lightto 
stimulate wound healing in animals [5].

Linnik and colleagues [6] conducted animal and clinical 
studies to investigate biological effects of laser radiation 
on the eye and demonstrated the stimulating effect of low-
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energy laser on retinal functions. In their experimental 
studies, the fundus of the animal received a threshold laser 
irradiation through the pupil (i.e., retinal laser coagulation 
was performed). Thereafter, electron microscopy and 
cytochemical studies were conducted. The signs of 
active biosynthesis (like an increased RNA synthesis and 
increased numbers of mitochondria) were found at the 
sites remote from laser coagulation foci. The examination 
of the effects of laser irradiation on the anterior segment 
of the eye revealed the signs of increased functional 
activity of corneal epithelial cells and lens epithelial cells. 
These findings were used in the development and clinical 
application of the method for treating human retinal and 
corneal disorders [7].

The mechanism of action of PBM
The biochemical mechanism underlying 

photobiomodulation is still not completely understood. 
It is believed that PBM therapy approach exploits the 
photochemical conversion potential of low-intensity far-
red to near-infrared light (FR/NIR), with mitochondria 
being implicated as the subcellular targets of FR/NIR [8-
11]. Mitochondria contain chromophores which absorb 
photons from PBM. In the cellular level, PBM acts on 
mitochondria to increase adenosine triphosphate (ATP) 
production, modulation of reactive oxygen species and 
leading to a change in transcription through transcription 
factor activation [12-14]. Transcription factor activation 
causes protein synthesis that triggers further effects like 
increased cell proliferation and migration, modulation in 
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the level of cytokines, growth factors and inflammatory 
mediators, and increased tissue oxygenation [15-17]. 
It is believed that cytochrome C oxidase (CcO) inside 
mitochondria functions as the photoacceptor [3]. CcO is the 
enzyme that represents a transmembrane protein complex 
essential for the sustained availability of energy inside 
cells [18-20]. Cell culture studies demonstrated directly 
that PBM enhances the activity of CcO [21,22]. Activation 
of CcO triggers a series of biochemical cascades. The 
stimulation of cytochrome C oxidase by FR/NIR light is 
reported to lead to an increase in the energy generation by 
mitochondria, increase in the metabolic rate, proliferation 
and migration of cells [23-26].  

Photobiomodulation also stimulates the release of 
nitric oxide (NO) from intracellular stores such as heme-
containing proteins [27,28]. It is assumed that PBM leads 
to the photo-dissociation of NO from the cytochrome C 
oxidase heme. Since NO displaces oxygen from CcO, 
inhibiting mitochondrial respiration and reducing ATP 
production, its dissociation from CcO restores oxygen 
consumption by mitochondria. This should enhance the 
energy production and thus increase cellular metabolism 
[29]. NO is probably the most important and best-
characterised mediator with a potent vasodilating function. 
It has been hypothesized that photobiomodulation may 
cause photodissociation of NO, not only from CcO, but 
from intracellular stores such as nitrosylated forms of 
both hemoglobin and myoglobin, leading to vasodilation 
[27, 30]. Nawashiro and colleagues [31] demonstrated 
an increase in cerebral blood flow after treatment with 
transcranial PBM. Vasodilation increases the availability 
of oxygen to treated cells, and also allows for greater traffic 
of immune cells into tissue. These two effects contribute 
to accelerated healing. Studies have demonstrated that 
PBM can reduce cell death and mitigate oxidative stress 
and retinal immune response in cell culture [32-34]. The 
processes described above are almost certainly only part 
of the story needed to explain all the effects of PBM on 
biological tissues.

CcO is a key enzyme in the bioenergetics of the cells, 
especially retinal neural and brain cells [35]. The retina is 
highly dependent on energy and is particularly vulnerable 
to mitochondrial dysfunction.

The retinal neurons, photoreceptors, and ganglion cells 
contain the highest density of mitochondria and therefore 
present as potential therapeutic targets for PBM [36].

In addition to the effect of PBM on the metabolism of 
photoreceptor cells, the effect of photobiomodulation on 
Muller cells, which protect photoreceptors, was also found. 
Albarracin and V alter [37] demonstrated that pretreatment 
with 670 nm light (in the rat model of lightinduced retinal 
degeneration) prior to damaging light exposure resulted in 
reduction of the light damage-induced changes in Müller 
cells.

Tang and colleagues [38] reported that PBM therapy 
protects retinal ganglion cells. Fuma and co-authors 
[39] demonstrated that PBM caused an increase in 
phagocytosisin human retinal pigment epithelial cells.

A scheme of retrograde mitochondrial signaling 
pathways has been proposed to explain the way in which a 
solitary and short-duration exposure to light may induce a 
biological effect lasting hours, days and even weeks [40].

Given that the mechanisms of actions of the FR/NIR 
light have been scientifically grounded, further research and 
application of biological effects of PBM are of sustained 
interest to the medical community [17,41,42].

Medical applications of PBM
PBM has been widely used for the therapy of 

numerous human diseases. One of the first fields of 
therapeutic application of PBM was low-energy He-Ne 
laser irradiation for wound healing [42,43]. PBM has 
been demonstrated to have effects on all the three phases 
of wound healing [44,45]. It is believed to promote 
wound healing by inducing the local release of cytokines, 
chemokines, and other biological response modifiers that 
reduce the time required for wound closure [46,47]. This 
result is achieved by increasing the production and activity 
of fibroblasts and macrophages, improving the mobility of 
leukocytes, promoting collagen formation, and inducing 
neovascularization [16,17,48].

Over the years, the number of conditions amenable 
to PBM has greatly increased. The use of PBM for pain 
control for neurologic pain has been reported. A study of 
randomized controlled trials [49] indicated that PBM can 
significantly reduce pain and improve health in chronic 
joint disorders such as osteoarthritis, patellofemoral pain 
syndrome, and mechanical spine disorders. PBM has also 
been shown to relieve periodontal pain during orthodontic 
tooth movement [50]. A review of clinical trials found that 
PBM reduces acute neck pain immediately after treatment, 
and up to 22 weeks after completion of treatment in 
patients with chronic neck pain [51].

A profound cardioprotective effect of PBM on chronic 
infarcted myocardium has been demonstrated in animals. 
This phenomenon was partially due to significant elevation 
in the number of undamaged mitochondria and ATP content 
in the cardiomyocytes in the ischemic zone after PBM [52-
55]. PBM treatment consisting of intravascular delivery of 
low-level laser irradiation has been reported [56]. 

It has been demonstrated that impaired mitochondrial 
oxidative metabolism is associated with neuronal dysfunction, 
neurological impairment, and neurodegeneration [57]. 
Therefore, interventions aimed at improving mitochondrial 
metabolism are hypothesized to benefit the function of both 
the diseased and normal brain [41].

In addition to its effects in increasing mitochondrial 
activity and activating transcription factors, PBM could 
benefit traumatic brain injury patients by inhibiting 
apoptosis, stimulating angiogenesis, and increasing 
neurogenesis [58-61].

Neuroprotective effects of PBM in brain ischemia have 
been demonstrated [62, 63]. Animal studies have shown 
promise for transcranial PBM for reduction of neurological 
damage in animal stroke models [64-66].  Transcranial 
PBM significantly improved outcome in human stroke 
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patients [67]. Studies indicated that transcranial PBM 
therapy had shown initial safety and effectiveness for the 
treatment of neurological diseases. 

PBM has also been considered as a candidate for treating 
degenerative brain disorders such as familial amyotropic 
lateral sclerosis, Alzheimer’s disease, and Parkinson’s 
disease [68-72]. Evidence of early cerebral metabolic 
decline in subjects predisposed to senile development of 
Alzheimer’s disease (especially, evidence of reduced CcO 
metabolism) has been reported, which may be employed in 
the use of PBM in these subjects [73, 74].

Transcranial PBM produces beneficial cognitive 
and emotional effects in humans, and may be effective 
in the treatment of cognitive and emotional disorders. 
Antidepressant effects of transcranial PBM therapy, 
with improvements in attention and memory, have been 
reported [75, 76].

Anders and colleagues [77] and Gigo-Benato and 
colleagues [78] reported that PBM promoted regeneration 
and functional recovery of injured peripheral nerve. 
PBM has been successfully used in the treatment of male 
androgenetic alopecia [79].

Ophthalmological applications of PBM
Mitochondrial dysfunction and oxidative damage 

are involved in the pathogenesis of different retinal 
disorders [80]. Reduced mitochondrial function, oxidative 
damage and inflammation are signs of ageing retina 
and characteristic for age-related macular degeneration 
(AMD) [81]. It has been demonstrated that PBM at 670 nm 
increased mitochondrial membrane potential and reduced 
complement activity in the aging retina [82-85].  Studies 
have shown that PBM can improve visual acuity, contrast 
sensitivity, and fixation stability, reduce drusen volume and 
thickness, and has beneficial effects on macular pigment 
density but no adverse side effects in patients with AMD 
[86-91].

 The application of PBM for the treatment of 
diabetic retinopathy and diabetic macular edema has 
been reported. Cheng and colleagues [92] demonstrated 
that daily administration of PBM induced by 670 nm 
light for 8 months significantly inhibited the diabetes-
induced increase in vascular permeability and capillary 
degeneration that is characteristic of diabetic retinopathy 
[92]. Others also have reported that PBM inhibited early 
changes in the retina in pigmented mice in diabetes-
induced retinopathy [93]. PBM treatment showed promise 
for improving patients with diabetic macular edema, with 
a post-treatment reduction in retinal thickness [94, 95]. 
Kim and colleagues [96] conducted a randomized trial 
of PBM for center-involved diabetic macular edema (CI-
DME) with good visual acuity. They concluded that 670-
nm light-emitting PBM as given in that study, although 
safe and well-tolerated, was not found to be effective for 
the treatment of CI-DME in eyes with good vision.

PBM applications for hereditary retinal degenerations 
have been reported. There have been a few case reports on 
successful use of transconjunctival PBM for the treatment 

of retinitis pigmentosa [97]. Scalinci and colleagues 
[98] used a light emitting diode (LED) of 10 Hz and 
wavelength 650 nm for PBM treatment of 45 patients with 
Stargardt Disease, and demonstrated that best corrected 
visual acuity (BCVA), MP-1 microperimetry, and pattern 
electroretinography (PERG) amplitude significantly 
improved one year after treatment [98].

Some authors have pointed to neuroprotective 
potential of PBM in the treatment of mitochondrial optic 
neuropathies. Leber’s hereditary optic neuropathy is 
accompanied by mitochondrial alterations and can result 
in retinal ganglion cell dysfunction and loss, leading 
to bilateral loss of vision [3, 99]. Rojas and colleagues 
[63] conducted a rat study and demonstrated that 650-
nm LED for PBM treatment can prevent neurotoxic 
effects of  rotenone, a natural mitochondrial complex I 
inhibitor. They concluded that PBM might be used in the 
treatment of neurodegenerative disorders associated with 
mitochondrial dysfunction [63].

PBM might also be effective for reducing phototoxic 
damage to the retina. Pre-treatment with 670 nm light 
(prior to damaging light exposure in the rat model of light-
induced retinal degeneration) resulted in a reduced loss 
of photoreceptor cells, amelioration of the light-induced 
alterations in the expression of specific markers for stress, 
and reduction of microglial and macrophage invasion [37]. 
In addition, preconditioning with PBM was more effective 
than treatment with PBM during or after exposure to 
damaging white light for reducing the phototoxic effect 
of light [100]. Eells and colleagues [101] reported on 
therapeutic PBM for methanol-induced retinal toxicity, 
and showed that PBM treatment protected the retina from 
the histopathologic changes induced by methanol-derived 
formate. Linnik and colleagues [7] used a subthreshold 
argon laser in a rabbit model of toxic cataract and 
demonstrated the resistance of rabbits to cataractogenesis.

In studies by Ivandic and Ivandic [102] and Guzun and 
colleagues [103], PBM improved visual acuity in patients 
with amblyopia. 

Beneficial effects of PBM for optic nerve damage 
have been demonstrated [41]. Schwartz and colleagues [7] 
showed effects of low-energy He-Ne laser irradiation on 
posttraumatic degeneration of adult rabbit optic nerve. It 
has been hypothesized that PBM improves the function of 
preserved nerve fibers rather than induces the restoration 
of neurons [105].

Conclusion
PBM is an effective and safe treatment for a wide 

range of disorders of human tissues and organs, including 
neurological and eye diseases. Although the mechanisms 
underlying the action spectrum of PBM (e.g., the action 
exerted on the retina) are still not completely understood, the 
actions of the FR/NIR light on mitochondrial metabolism 
have been scientifically grounded. Further research on 
developing (a) novel equipment for conducting PBM and 
(b) standard PBM treatment protocols is warranted.
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