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Thermal homeostasis is required in order to ensure that the normal function of 
the human body is maintained under various environmental conditions. Various 
pathological processes impacting metabolism in tissues and organs (e.g., the 
human eye) are accompanied by changes in relative internal heat balance. 
Although numerous relevant studies have been conducted, heat exchange 
processes in the human eye have not been yet sufficiently investigated. Further 
research on the features of heat exchange in the eye is required not only to 
improve our knowledge in the field of physiology of the eye, but also to use 
the data obtained for developing novel advanced techniques for eye disease 
diagnosis and treatment.Keywords: 
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The human organism is capable of maintaining 
homeostasis, a relative stability of its internal 
environment, while adapting to continuously changing 
external conditions, with the physiological parameters of 
tissue metabolism being carefully controlled within very 
narrow ranges. Temperature is a fundamental parameter 
of metabolism.[1, 2]. A relative stability of the internal 
thermal environment of the body is required for normal 
metabolism and enables normal functioning of all organs 
and systems.[1, 3, 4].

There is an ongoing process of energy exchange in the 
form of heat to support homeostasis in the human. Heat 
exchange processes enable a balance of the amount of heat 
produced and the amount of heat released. Heat energy 
production in the body goes on continuously in the course 
of exothermic metabolic reactions, with an amount of 
heat production depending on the activity of metabolism.
[5]. Excessive heat is released into the surrounding 
environment by infrared (IR) electromagnetic radiation, 
thermal conduction, evaporation and convection. [6, 7].

Heat exchange in biological systems may be considered 
within the framework of laws of thermodynamics which 
describe in general terms how energy is transformed and 
transferred. Biological systems are open thermodynamic 
systems which strive to become thermally balanced and in 
which heat transfer occurs continuously.[8-10]. Assessment 
of heat exchange processes is based on temperature and 
heat flux measurements. Temperature is a scalar physical 
quantity which characterizes a condition of heat balance 
for a thermodynamic system. Heat flux or heat transfer 
requires a temperature gradient. The heat flux, contrary to 
temperature, has a certain direction and is always directed 
toward lower temperature.[8]. The heat flux characterizes 
heat exchange power, i.e., the flow of energy transferred 
through the surface of the body per time unit.[11].

The major source of heat for the eye is from the flow 
of blood circulating in the choroid. Blood enters the eye 
at a temperature that equals the intracranial temperature, 
causing a temperature gradient. This induces a heat flux 
directed toward lower temperature, i.e., toward the cornea 
that contacts with the external environment. Heat transfer 
in the eye occurs mainly by thermal conduction and by 
convection from the aqueous to the surrounding tissues 
in the anterior and posterior chambers.[7]. The heat 
distributed across ocular tissues is lost to the environment 
through the cornea and conjunctiva mostly by radiation, 
convection and evaporation. The more intensive the 
circulation, the larger amount of heat is transferred to 
ocular tissues. The flow of blood circulating in the iris and 
ciliary body is another source of heat for the eye but is 
smaller than that circulating in the choroid.[12-14].

Body temperature measurement is a practice that has 
been used for centuries by men of medicine. Hippocrates 
provided descriptions of certain diseases also by 
differentiating between hot and cold objects as early as 
400 BC. Not until the invention of the thermometer by 
Galileo was it possible to make quantitative temperature 
measurements.[3]. Interest in eye temperature spans over 
decades, since the time of Dohnberg, who attempted to 
measure the ocular surface temperature (OST) with a 
mercury thermometer, as far back as 1876.[15]. Zeiss was 
the first to report on heat IR radiation measurements on the 
corneal surface.[16]. Later Mapstone continued research 
in this field.[17].

The OST can be measured by contact thermometry 
through temperature sensors (thermistors and 
thermocouples) requiring a direct contact with the cornea 
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or conjunctiva. Liquid crystal thermography is a contact 
method for the measurement of OST. [18, 19]. Temperature 
sensors may be used as components of a smart contact lens.
[20, 21]. The OST can be measured without direct contact, 
by measurement of IR radiation from the ocular surface. 
IR thermometry or thermography methods are used for 
this purpose. [22, 23]. Recently, there have been advances 
in the development of means for measuring heat flux and 
heat flux density, e.g., in ophthalmology.[24].

The intraocular temperature can be measured only 
invasively, e.g., by introducing a measuring probe into the 
anterior chamber of vitreous cavity of the experimental 
animal.[25, 26]. It is feasible to measure the intraocular 
temperature in the clinical setting only under conditions 
of surgery in the presence of already formed surgical 
approach, e.g., through a vitrectomy port. [27, 28]. There 
are reports on implantation of intraocular sensors during 
cataract surgery in eyes with primary open-angle glaucoma 
(POAG), which allow long-term monitoring of intraocular 
temperature (IOT) in the human eye [29].

Temperature of and heat flux from the external 
ocular surface

The surface temperature of the central cornea in 
healthy individuals has been reported to range widely, from 
32°С to 36°С (Table 1). There is a progressive increase 
in temperature from the corneal centre to periphery [13, 
38, 42-44], with the limbus being warmer than corneal 
centre by 0.45–1.0ºC [45] due to the absence of corneal 
vascularization and continuous tear film evaporation at the 
surface. 

OST depends on the ambient environmental conditions 
like air velocity and temperature. A linear relationship was 
found between corneal surface temperature in humans 
or animals and ambient environment temperature in the 
absence of air motion.[2, 12]. Room temperature was 
shown to influence OST; a rise in 1 °C room temperature 
may lead to an increase of 0.15 °C to 0.2 °C in OST.[46]. 
OST decreases with a decrease in ambient temperature 
and an increase in air velocity.[2, 47] A change in relative 
air humidity has little effect on the corneal surface 
temperature.[48].

OST also is affected by the state of the tear film.
[39, 45, 46, 49-52]. Corneal surface temperatures are 
lower [39,49,52], whereas ocular surface cooling rates 
are higher [39,49,52] in patients with dry eye than in 
healthy individuals. The prevailing factors underlying 
the pathogenesis of dry eye syndrome can affect OST and 
changes in OST with time.[39, 49, 52].

Eyelids undoubtedly can have an impact on OST, 
and blinking causes dynamic changes in OST.[12, 13]. 
Blinking restores the tear film and facilitates the contact of 
the ocular surface with the highly vascularized palpebral 
conjunctiva. Early after a blink, the OST is close to the 
body temperature.[13]. In a study by García-Porta and 
colleagues [53], central corneal temperature decreased 
immediately after opening the eye, and the eyes cooled 
with an average decrease of 0.24°C during the first second 

in healthy subjects. A slower decrease was then observed 
between 1 and 8 seconds.

OST increases when contact lenses are worn. OST 
beneath a contact lens immediately following contact 
lens wear was significantly greater compared to non-lens 
wearers, with lens material having the greatest effect on an 
increase in the corneal surface temperature.[32, 45].

Dilation of eye showed increase in OST for both 
normal subjects and diabetic retinopathy patients. Dilation 
studies showed an average increase of 0.82 ± 0.13 °C in 
cornea.[42]. There was also an increase in density of the 
heat flux from the ocular surface with eye dilation.[24]. 
It is likely that the iris, due to its weak blood flow and the 
lower temperature of the aqueous of the anterior chamber, 
partially blocks the outflow of heat from the choroid. [14].

No significant interocular difference in OST has been 
reported in animals and humans.[30, 33, 41, 42, 54, 55]. 
Morgan and colleagues [34] found that 95 percent of 
the normal population have an interocular temperature 
difference of 0.60 degrees or less.

A positive correlation between body temperature and 
OST has been reported in literature. Previous studies have 
shown that a 1°C increase in body temperature results in a 
0.98 °C increase in OST.[49].

It is known that corneal surface temperature is lower 
than internal body temperature.[45, 54] Koçak and 
colleagues [33] reported that average corneal temperature 
varied significantly during the day (p < 0.0001), with 
lower corneal temperature readings during the morning 
hours compared to those obtained during the afternoon. 
There is circadian rhythmicity of human body temperature 
with a range of 0.8-1°C between night (minimum) and day 
(maximum) temperatures.[56, 57].

OST decreases with age [31], with a reduction of 
0.01°C–0.023°C per year and it is more evident among 
middle-aged subjects and above.[58]. An average decrease 
in temperature at the center of the cornea between healthy 
young individuals of 21-30 years and individuals of 51-
60 years was of approximately 1°С. [42]. In healthy 
individuals, the density of heat flux from the eye also 
decreases with age.[40]. This is likely to be associated with 
age-related atrophic changes in the choroid and reduced 
choroidal blood flow.[59]. In healthy people, the density 
of the heat flux of the eye on the surface of the cornea is 
a function of the choroidal blood flow and thickness.[40, 
60].

The OST in patients with age-related macular 
degeneration (AMD) was found to be lower than in 
healthy individuals of the same age.[38] This is likely to 
be associated with reduced choroidal thickness in patients 
with AMD.[61].

In  patients  with diabetic retinopathy (DR), 
Chandrasekar and colleagues found a lower OST compared 
to healthy individuals. [42]. In our previous study, a 
lower density of heat flux in eyes with the proliferative 
DR compared to the non-proliferative DR was detected. 
[62]. This may be explained by severely abnormal ocular 
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hemodynamics in proliferative DR. The results obtained 
were in agreement with those of others (particularly, the 
choroidal thickness in proliferative DR was lower than 
in non-proliferative DR). [63]. At the same time, we did 
not observe that OST differs significantly in patients 
with proliferative and nonproliferative DR [62], which 
indicates the advisability of measuring the density of heat 
flux along with OST for a comprehensive assessment of 
the heat transfer of the eye.

There have been reports on the effects of retrobulbar 
hemodynamics on OST.[64, 65]. In a study of ocular 
temperature in carotid artery stenosis by Morgan and 
colleagues [66], corneal surface temperature was cooler 
at the side of the stenosis. Sodi and colleagues [67] 
found that, in patients with central retinal vein occlusion 
(CRVO), ischemic CRVO eyes showed lower temperatures 
than nonischemic ones. Therefore, insufficient delivery of 
blood to the eye can lead to a low OST.

Inflammation is known to affect blood circulation 
and metabolism, leading to abnormal thermoregulation.
[68] In a study by Efron and colleagues [69], conjunctival 
hyperemia was significantly correlated with conjunctival 
temperature. Inflammatory eye disease is commonly 
characterized by an increased ocular surface temperature. 
[34, 70-72].

OST values were significantly lower in patients with 
primary open-angle glaucoma (POAG) than in healthy 
controls.[65]. In a study by García-Porta and colleagues 
[53], on opening of the eye, subjects with glaucoma 
showed significantly cooler temperatures in the central 
cornea compared to healthy controls. In subjects with 
glaucoma, the eyes cooled significantly faster. Those 
authors believe that their results support the hypothesis 
that both the stability of the tear film and changes in the 
ocular blood supply in subjects with glaucoma play an 
important role in thermal dynamics of the ocular surface.

On the other hand, Leshno and colleagues [73] found 
that eyes with glaucoma had a significantly higher OST 
compared to controls. The authors [73] concluded that 
differences in the OST between glaucomatous and normal 
eyes strengthen current thinking that inflammation affects 
the pathophysiology of glaucoma.

OST and heat flux density values were lower for 
eyes with neovascular glaucoma in the presence of 
DR than for non-glaucomatous fellow eyes. It may be 
hypothesized that low ocular heat exchange characteristics 
are caused by limited ocular hemodynamics and hampered 
metabolism due to high IOP. In addition, in all cases, active 
inflammation had no decisive effect on heat radiation from 
the eye.[74, 75]. There was an increase in heat radiation 
from the corneal surface after IOP decrease in these 
patients.[75] .An increase of IOP was found to be related 
to a contemporary decrease of ocular perfusion pressure 
and OST in monkeys.[76].

Some IOP-reducing medications may lead to a 
reduction in OST in patients with glaucoma.[77]. This is 
likely caused by the influence of these drugs on the blood 

flow to the anterior segment of the patient's eye. Thus, it 
has been reported previously on thermography evidence of 
the influence of vasoconstrictors and vasodilators on the 
OST.[78].

An increased OST is not uncommon after eye surgery. 
An increase in corneal surface temperature has been 
reported after surgery for glaucoma [79] and cataract [80], 
and after vitreoretinal surgery. [81]. This is likely to be 
caused by postoperative inflammatory response in ocular 
tissues.

OST monitoring can be successfully employed during 
epibulbar tumor cryosurgery. It has been reported on the 
use of real-time IR thermography for determining the 
duration of cryogenic exposure not leading to excessive 
cooling of the surrounding ocular structures, particularly, 
the ciliary body and cornea.[82]. Corneal surface 
temperature changes can be monitored for assessing an 
increase in corneal temperature during excimer-laser 
refractive surgery.[83-85]. IR thermography may be useful 
for monitoring patients after corneal transplant surgery for 
early detection of transplant failure [86], and for control of 
filtering bleb formation after glaucoma surgery. [23].

Intraocular temperature (IOT)
There has been a long history of attempts to assess IOT 

in experimental animals. In a rabbit study by Schwartz and 
Feller [26], average difference between temperature at the 
retina and at the outer surface of the cornea was 5.01 ºC. 
They found no significant interocular difference in IOT 
in animals.[26]. May and colleagues [87] confirmed the 
existence of an IOT gradient in the rabbit. There have been 
reports on the effects of the ambient temperature on the 
IOT in experimental animals.[88, 89].

Data from different studies on intraocular temperatures 
at the initial stages of eye surgery in humans are presented 
in Table 2. These studies confirmed the existence of an 
IOT gradient in humans.

Thus, the temperature in the anterior chamber is 
lower than that of the vitreous cavity, likely due to the 
following factors: some heat release to the ambient; partial 
absorption, by the iris, of the heat produced mostly in the 
posterior segment of the eye; the lower heat conduction 
of the lens compared to the surrounding tissues prevents 
significant heat transfer from the posterior segment to the 
anterior segment of the eye.[14, 94].

In a study by Mansouri and colleagues [29], patients 
underwent implantation of an intraocular sensor during 
cataract surgery,which made it possible to assess long-term 
IOT variations in eyes with POAG. The results showed 
significant short-term and longterm fluctuations of IOT. 
Particularly, on average, IOT was significantly higher on 
Sundays than on any other day of the week, and over the 
year, IOT followed a clear seasonal pattern.

Significant IOT fluctuations take place the course 
of vitreoretinal surgery. The temperature of irrigation 
solutions used in standard vitrectomy is substantially 
lower than that of the intraocular media, and commonly 
corresponds to the ambient operating room temperature. 
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Consequently, irrigation in vitrectomy is performed under 
conditions of uncontrolled IOT and retinal temperature 
reduction.[27]. Data from different studies on IOT in the 
course of vitreoretinal surgery are presented in Table 3.

Therefore, vitrectomy is performed under conditions of 
uncontrolled local ocular hypothermia, with the severity of 
hypothermia depending on irrigation solution temperature. 
A fast uncontrolled increase in intravitreal temperature 
takes place after discontinuation of irrigation in vitrectomy.
[81, 95]. Effects of these temperature fluctuations and 
concomitant vascular responses in ocular tissues have not 
been completely investigated and require further research.

Modeling the intraocular heat processes
Modeling can be used as an alternative to conventional 

methods of temperature assessment inside a biological 
system that cannot be investigated directly, and the 
human eye is such a system. Modeling is the best tool for 
predicting the intraocular processes influenced by medical 
techniques that are used in clinical ophthalmology and 
change the heat balance in the eye.

Early theoretical models of heat transfer in the eye 
in humans and in animals were developed to investigate 
thermal effects of microwave radiation on ocular structures. 
The results obtained by these models were verified by 
experimental measurements of intraocular heat processes 
under hyperthermic conditions and determining thermal 
characteristics of some intraocular structures.[14, 96, 97]. 
A mathematical model has been developed by Lagendijk 
[98] to calculate transient and steady state temperature 
distributions in normal unexposed human and rabbit eyes, 
and human and rabbit eyes heated by various heating 
techniques. The thermal conductivity and the specific heat 
of the lens of the rabbit eye were determined empirically. 
The heat transfer coefficients obtained were subsequently 
used by others in their studies. Scott [94] developed a 
finite element model of heat transport in the human eye, 
calculated the intraocular temperature distribution, and 
assessed the effects of various factors on this distribution. 
The effects of the ambient temperature, body-core 
temperature, choroidal circulation, and evaporation and 
convection from the corneal surface on the temperature 
distribution in the human eye were considered. In addition, 
the effect of lens thermal conductivity on the temperature 
distribution in the anterior segment of the eye was 
determined.[94]. Others also reported their models for the 
effects of circulation on the temperature distribution in the 
human eye and orbit.[99] Ng and Ooi [100-102] developed 
2-dimension  (D) and 3D finite element models of the 
human eye to simulate its thermal steady state conditions 
based on the properties and parameters reported in the 
open literatures and conducted a study to compare the 
two models. Blood temperature, ambient temperature, and 
evaporation rate were found to be the major parameters 
affecting the ocular surface temperature. These authors 
also assessed the effects of aqueous humor hydrodynamics 
on heat transfer in the human eye.[100-102]. Rafiq and 
Khanday [103] believed blood perfusion, evaporation and 

ambient temperature to be the major factors influencing the 
temperature distribution in the eye. Gokul and colleagues 
[104] developed a finite element model of the human eye 
to investigate the thermal effects of eyelid closure and 
opening in human eye. They demonstrated that the blood 
flow in the choroid increases OST when the lids are closed, 
and facilitates maintaining a constant OST. Modelling has 
been successfully used to predict thermal phenomena in 
ocular tissues during various medical procedures like 
exposing retinal, corneal and ciliary body tissues to 
laser [105-108], epibulbar tumor cryosurgery [82], and 
implanting intraocular electronic devices. [109, 110]. 

Conclusion
Therefore, although numerous relevant studies have 

been conducted, temperature distribution patterns of heat 
exchange processes in the human eye have not been yet 
sufficiently investigated. Temperature measurements alone 
should not suffice for further comprehensive research of 
the heat exchange in the eye. Advanced methods of heat 
flux registration and heat process modeling should be more 
actively employed. The combined application of means for 
measuring the temperature and heat flux density will allow 
obtaining valuable data on the processes of heat release 
from the ocular surface depending on the blood flow in 
the eye, intraocular pressure, and stage of the pathological 
process, and relevant changes with treatment. This, in turn, 
will improve our knowledge in the field of physiology 
of the eye, and will allow using the data obtained for 
developing novel advanced techniques for eye disease 
diagnosis and treatment.
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Table 3. Intraocular temperature before and after vitrectomy for vitreoretinal disease

Authors Year
Irrigation solution 

temperature,  
°С ± SD

Midvitreous temperature 

before vitrectomy °С ± SD after vitrectomy, 
°С ± SD

Horiguchi M, Miyake Y.90

Landers M.B., et al.91

Romano M. R., et al.92

Iguchi Y., et al.28

Nazaretian RE., et al.27

Shinoda, K., et al.93

1991
2012
2013
2014
2018
2022

25.0
22.4

20.0-22.0
26.4 ± 0.8
24.5 ± 0.5

25.0

34.0-35.0
33.9
33.6

33.0 ± 1.3
33.9 ± 0.4

33.8 ± 0.95

27.0-28.0
24.9
24.8

30.7 ± 1.7
30.3 ± 0.4
29.6 ± 2.0

Table 2. Data from different studies on intraocular temperatures at the initial stages of vitreoretinal surgery in humans

Authors Year
Temperature in the 
anterior chamber, 

°С±SD

Midvitreous 
temperature, 

°С±SD

Temperature in 
the posterior 

pole, 
°С±SD

Room 
temperature, °С

Horiguchi M, Miyake Y.90

Landers M.B., et al.91

Romano M. R., et al.92

Iguchi Y., et al.28

Nazaretian RE., et al.27

Shinoda, K., et al.93

1991
2012
2013
2014
2018
2022

-
-

23.6±1.8
-
-

30.1±1.7

34.0-35.0
33.9

33.6 ± 1.4
33.0 ± 1.3
33.9 ± 0.4

33.8 ± 0.95

-
34.8 - 35.2*

-
-

34.2 ± 0.36**
34.7 ± 0.95***

25.0
22.4

20.0-22.0
26.4
24.5
25.0

Note: *, Retinal temperature, range; **, temperature in the posterior vitreous at the fovea; ***, temperature in the posterior 
vitreous directly at the optic nerve

Table 1. Data from different studies on central corneal temperatures in healthy individuals

Authors Year Meter Ambient temperature,  
°С±SD

Corneal 
temperature, °С±SD

Mapstone R.12

Horven I.30

Alio J, Padron M.31

Martin DK, Fatt I.32

Koçak I, Orgül S, et al.33

Morgan PB, Soh MP, et al.34

Craig JP, et al.35

Purslow C, Wolffsohn J.13

Tan L, Cai ZQ, et al.36

Kamao T., et al.37

Sodi A, Matteoli S, et al.38

Abreau K., C. Callan, et al.39

Anatychuk, L., et al.40

Matteoli S, et al.41

Chandrasekar B, et al.42

1968
1975
1982
1986
1999
1999
2000
2007
2009
2011
2014
2016
2019
2020

2021

Bolometer
Thermistor

IR thermometer
Thermistor

IR thermometer
IR thermograph
IR thermograph
IR thermograph
IR thermograph
IR thermograph
IR thermograph
IR thermograph
Thermocouple
IR thermograph

IR thermograph

24.0
21.5-24.5

21.0
19.8 ± 2.0
22.5 ± 1.4

22.0
23.1 ± 2.3
21.0 ± 0.6
25.1 ± 0.3
26.5 ± 1.5
20.8 ± 2.7

24.0
21.3 ± 0.8
24.6 ± 2.1

25.0

35.1
33.7

32.9 ± 0.6
34.5 ± 1.0
33.5 ± 0.5

31.99
33.82 ± 0.36
36.14 ± 1.11
34.7 ± 0.5

34.58 ± 0.75
34.64 ± 0.84
35.11 ± 0.64
34.6 ± 0.7

35.0 ± 0.5 (M)
34.9 ± 0.5 (W)

34.8 ± 0.7

Note: M, male; F, female. Statistical comparison between male and female ocular surface temperatures, carried out for 
each ocular region, did not show any significant difference (p-value > 0.093).41


