https://doi.org/10.31288/oftalmolzh202551418

Correlation of impaired tear mucin production with relative expression of neurtrophil activation marker CD 15+ in patients with type 2 diabetes mellitus

Zhmud T. 101, Drozhzhyna G. 102

- National Pirogov Memorial Medical University Vinnytsya (Ukraine)
- ² SI «Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine» Odesa (Ukraine)

Aim: To determine tear mucin levels in patients with type 2 diabetes mellitus (T2DM) and correlate them with the levels of the neutrophil activation marker CD15+ in epithelial cells of the bulbar conjunctiva in patients with T2DM, depending on the grades of squamous metaplasia.

Material and Methods: Thirty-seven patients (37 eyes) with ocular surface damage and T2DM comorbidity were enrolled in this study. Fifteen sex- and age-matched participants without T2DM comprised the control group. Based on the cytological changes in the bulbar conjunctiva and according to Nelson's classification, patients with T2DM were divided into two main groups: Study group 1 – 29 patients (29 eyes) with changes in the bulbar conjunctiva corresponding to grades II and III of squamous metaplasia according to Nelson's classification; study group 2 – 8 patients (8 eyes) with grades 0-I according to Nelson's classification.

Results: The mucin level was significantly lower in study group $I - 0.95 \pm 0.18$ g/l compared to study group $II - 1.28 \pm 0.09$ g/l and controls $- 1.59 \pm 0.08$ g/l (p < 0.0001). Median relative expression of CD15+ was 4% in study group I whereas only one patient in study group II (12.5%) and the control group (6%) was positive for CD15+ expression. Relative expression of CD15+ strongly negatively correlated with the mucin level in the study group I (rs = -0.87; p < 0.0001). Nelson's grades also negatively correlated with mucin levels in patients with T2DM (rs = -0.87; p < 0.0001).

Conclusion: Tear mucin levels are significantly reduced in patients with T2DM and show a strong negative correlation with the neutrophil activation marker CD15+ in the epithelial cells of the bulbar conjunctiva depending on the grade of squamous metaplasia. This indicates dysregulation of ocular surface homeostasis and the inflammatory component in the development of ocular surface damage in T2DM.

Key words:

mucin, CD15+, ocular surface damage, DED, inflammation, T2DM, diabetes mellitus. comea

Introduction

Despite various underlying causes, there are several common histopathological changes of the ocular surface epithelium in patients with dry eye disease (DED), including the loss of goblet cells in the conjunctiva, abnormal epithelial cell hyperplasia (presenting as squamous metaplasia), increased cellular stratification, and keratinization. The loss of goblet cells may be directly linked to chronic inflammation and apoptosis of epithelial cells, associated with cellular hyperosmolarity and chronic damage due to mucin deficiency (Baudouin et al., 2013, 2018) [1, 2]. Changes in the mucin layer can lead to increased tear evaporation, contributing to tear hyperosmolarity, and subsequently triggering the release of inflammatory mediators. These mediators may further negatively affect the differentiation, proliferation, and secretion of mucins by goblet cells causing a vicious circle of DED.

According to recent studies, chronic low-grade inflammation is associated with the development and clinical course of T2DM [3, 4]. Elevated levels of pro-inflammatory biomarkers are observed in the early stages of T2DM and its complications [5]. Moreover, high levels of IL-6 and C-reactive protein (CRP) are strongly associated with an increased risk of developing T2DM [5, 6, 7]. Significant associations with risk of T2DM have been observed for neutrophil and lymphocyte fractions in complete blood count [8]. In patients with T2DM, there is a reduction in neutrophil function, with impaired migration, and adhesion to the epithelium, which promotes the release of cytokines and chemokines, leading to subclinical and evident inflammation. This systemic immune response affects the ocular surface and the function of the tear system by activating the innate immune system and increasing the levels of proinflammatory cytokines (IL-6, IL-1, TNF-α). Inflammatory mediators damage goblet cells, leading to ocular surface damage [9, 10, 11]. Furthermore, hyperglycemia has a direct damaging effect on the ocular surface, specifically the epithelial and goblet cells of the conjunctiva. Tissue dysfunction also induces an adaptive response called parainflammation which, despite its ubiquitous nature, plays a crucial role in pathogenesis of DED [12].

Neutrophil activation marker CD15+ participates in the functions of neutrophils, particularly in intercellular interactions, adhesion to epithelial and endothelial cells, phagocytosis, and stimulation of degranulation. Given the spectrum of activity and expression sources of CD15+ (epithelial cells of the conjunctiva), determining mucin level and its correlations with CD15+ may provide valuable insights into the pathogenic mechanisms of DED development in patients with T2DM, as well as new perspectives for evaluating diagnostic biomarkers of ocular surface damage and treatment strategies.

Aim. To determine tear mucin levels in patients with T2DM and correlate them with the levels of the neutrophil activation marker CD15+ in epithelial cells of the bulbar conjunctiva in patients with T2DM, depending on the grades of squamous metaplasia.

Material and Methods

Thirty-seven patients (37 eyes) with ocular surface damage and T2DM comorbidity were enrolled in this study. Fifteen sex- and age-matched participants without T2DM comprised the control group. Patients with T2DM were divided into two main groups based on the cytological changes in the bulbar conjunctiva and according to Nelson's classification [13]: Study group 1 – 29 patients (29 eyes) with changes in the bulbar conjunctiva corresponding to grades II and III of squamous metaplasia according to Nelson's classification; study group 2 – 8 patients (8 eyes) with bulbar conjunctival changes corresponding to grades 0-I according to Nelson's classification.

Exclusion criteria of the study included history of ocular surgery, ocular trauma; use of artificial tear substitutes, topical steroids, or cyclosporine; other ocular conditions such as glaucoma, eyelid anomalies, chalazion, use of contact lenses; and systemic autoimmune diseases.

Mucin spectrometric assay

The tear mucin level was determined by placing filter paper strips (Filtrak, No. 338, Germany, size 7×12 mm) in the lateral part of the lower conjunctival fornix for 5 minutes. After soaking, the tear fluid was eluted from the strips into physiological saline. The obtained solution was then centrifuged for 10 minutes at 3000 rpm. The supernatant was used for biochemical analysis. Mucin content was measured in the supernatant using an SF-26 spectrophotometer (Lomo, Ukraine) and a "Spekol-21" spectrophotometer (Jena, Germany).

CD15+ immunocytochemical assay

Relative expression of CD15+ was determined in conjunctival samples collected by the standard CIC procedure followed by the immunocytochemical study.

Primary antibody CD 15+ clone Carb3 (Dako, Denmark) and the Mouse/Rabbit PolyVueTM polymer imaging system for antigen detection HRP/DAB (Diagnostic BioSystems, USA) were used according to the standard protocol.

The samples were analyzed using a light microscope (*100; *400).

CD15+ cells were counted per 100 epithelial cells in each sample. The percent value was computed by multiplying the numeric value of the antigen-binding ephitheliocyte ratio by 100.

Ethics

All procedures performed in this study involving human participants were conducted ethically according to the ethical standards of Vinnytsia National Pirogov Memorial Medical University Committee of Bioethics (approval number 08.11.2024 № 1) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study."

Statistics

Statistical analysis of the obtained data was performed using the software package Statistica v.10.0 (StatSoft, USA). Data are presented as mean \pm standard deviation (M \pm SD), as well as in percentage (%). A two-tailed t-test was used to evaluate intergroup differences for continuous variables with normal distribution (the Kolmogorov–Smirnov test). Correlations between mucin levels and laboratory tests were evaluated using Spearman's rank correlation. P-value <0,05 was considered statistically significant.

Results

Patients of both study groups demonstrated good and fair glycemic control (< 8 mmol/l) (Table 1). Basic characteristics of groups are given in the table 1.

The mucin level was significantly lower in study group I $(0.95 \pm 0.18 \text{ g/l})$ compared to study group II $(1.28 \pm 0.09 \text{ g/l})$ and controls $(1.59 \pm 0.08 \text{ g/l})$ (p <0.0001). Median relative expression of CD15+ was 4% in study group I whereas only one patient in study group II (12.5 %) and the control group (6 %)

was positive for CD15+ expression. Further intragroup comparative analysis between patients with Nelson's grades II (n=16) and III (n=13) has revealed significant differences in both relative expression of CD 15+ and mucin level (p < 0.0001) (Table 2).

Despite showing the same Nelson grades, study group II and controls also demonstrated significant differences in mucin level (p < 0.0001). It may be due to the possible pathogenetic impact of T2DM on mucin production and quality.

Further correlation analysis has been conducted to assess interactions between mucin levels and age, glycemic control, relative CD 15+ expression, and Nelson's grades (Table 3).

Relative expression of CD15 strongly negatively correlated with the mucin level in the study group I (rs = -0.87; p < 0.0001) [14]. Despite moderate negative correlation, CD15+ failed to show significance in study group II, which may be due to the small size of this group (p = 0.1282). CD15+ level was also insignificant among controls. However, conducting correlation analysis among all T2DM pa-

Table 1 Basic characteristics of groups

Characteristic		Study group 1 (n=29 eyes)	Study group 2 (n=8 eyes)	Control group (n=15 eyes)	р	
Age, years		62.07±5.94	60.00±3.92	63.93±7.00	p _{1,2} =0.3612 p _{2,3} =0.1590 p _{1,3} =0.3588	
HbAc1, %		6.79±0.57	7.46±0.21	n/a	p _{1,2} =0.0029*	
CD 15+		4 (range – 0-10)	0 (range – 0-3)	0 (range – 0-3)	p _{1,2} =1,000 p _{1,3} =1,000	
Mucin level, g/l		n/a	1.28±0.09	1.59±0.08	$p_{1,3} < 0.0001*$ $p_{1,2} < 0.0001*$ $p_{2,3} < 0.0001*$	
Nelson's grade	0-1	n/a	8	15		
	2	16	n/a	n/a		
	3	13	n/a	n/a		

Note. * p < 0.05 is considered statistically significant; n/a - not applicable; p1 - study group 1; p2 - study group 2; p3 - control group.

Table 2 Intragroup comparison (study group I)

Laboratory toot	Study	n value	
Laboratory test	Nelson's grade II	Nelson's grade III	p-value
CD 15 + (%)	3.5±1.31	7.15±1.86	<0.0001*
Mucin (g/l)	1.08±0.11	0.79±0.10	<0.0001*

Note. * p < 0.05 is considered statistically significant.

Table 3 Correlations between mucin level, age, and laboratory indicators

Mucin Indicator	Study group 1 (r _s)	р	Study group 2 (r _s)	р	Control group (r _s)	р
Age	-0.09	0.6134	-0.69	0.0570	-0.34	0.2134
HbAc1	-0.24	0.1969	-0.02	0.9540	n/a	n/a
CD 15+	-0.87	<0.0001*	-0.58	0.1282	-0.43	0.1048
Nelson grade	-0.83	<0.0001*	n/a	n/a	n/a	n/a

Note. *p < 0.05 is considered statistically significant between CD15+, Nelson grade and mucin in study group 1.

tients (both study groups -37 eyes), we obtained a very strong correlation between CD15+ and mucin level (rs = -0.9). Nelson's grades also negatively correlated with mucin levels in patients with T2DM (rs = -0.87; p < 0.0001). Analyzing mucin levels and abnormal Nelson's grades in study group I, we confirmed a very strong correlation (rs = -0.83; p < 0.0001), however, we could not evaluate the same correlations in study group II and controls. Age and glycemic control have not shown any significant correlation in all groups.

Discussion

T2DM is associated with epithelial damage to the cornea and conjunctiva which leads to a reduction in the number of goblet cells. The latter decreases mucin production and impairs the hydrophilic nature of the ocular surface, resulting in tear film instability [15]. Our study shows a significant difference in tear mucin levels between patients with T2DM and controls. Additionally, a significant reduction in mucin production was observed in patients with Nelson's grades II and III in comparison to grades 0 and I

(p<0.0001). Baudouin C. et al. (2019) described a potential link between mucin dysfunction and inflammation as part of uncontrolled chronic inflammation, of the vicious circle in dry eye disease [16].

Recent research shows an increasing interest in the role of inflammatory processes, subclinical inflammation, and parainflammation in the development of dry eye disease (DED), with low-grade inflammation being present in T2DM [17]. The presence of polymorphonuclear neutrophil granulocytes is highly regulated in the anterior segment of the eye [18]. Neutrophil granulocytes (CD45+, CD15+) are key components of innate immunity, mainly due to their phagocytic properties and direct migration to the site of inflammation, infiltrating surrounding tissues. Furthermore, they are also involved in the adaptive immune system through interactions with T and B cells [19, 20, 21]. Increased expression of CD15+ was observed in study group 1 compared to study group 2 and controls showed similar patterns in our study. Thus, the latter may be the marker of ocular surface damage in patients with T2DM.

Also, we have demonstrated a strong negative correlation between mucin levels in the tears and the expression of the neutrophil activation marker CD15+ in the epithelial cells of the bulbar conjunctiva (rs = -0.87; p <0.0001) in the group of patients with T2DM and squamous metaplasia grades II and III according to Nelson's classification, compared to the control group. This could be related to the potentially disrupting pathophysiological effect of T2DM, specifically hyperglycemia, on mucin production and quality.

This study has several limitations. First, a relatively small number of participants and a lack of Nelson's grades variety in the study groups. Thus, larger cohort studies on this topic are required. We also did not determine mucin subtypes, which could be valuable both for diagnosis and for a better understanding of the pathogenic mechanisms of ocular surface damage in patients with T2DM. Also, we did not use qualitative analysis of goblet cell density as it is reported in modified Nelson's scales. We will address these problems in our further research.

In conclusion, tear mucin levels are significantly reduced in patients with T2DM and show a strong negative correlation with the neutrophil activation marker CD15+ in the epithelial cells of the bulbar conjunctiva depending on the grade of squamous metaplasia. This indicates dysregulation of ocular surface homeostasis and the inflammatory component in the development of ocular surface damage in T2DM.

References

- Baudouin C, Aragona P, Messmer EM, Tomlinson A, Calonge M, Boboridis KG, et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013;11(4):246-58. doi: 10.1016/j.jtos.2013.07.003.
- Baudouin C, Irkeç M, Messmer EM, Benítez-Del-Castillo JM, Bonini S, Figueiredo FC, et al. Clinical impact of inflamma-

- tion in dry eye disease: proceedings of the ODISSEY group meeting. Acta Ophthalmol. 2018;96(2):111-9. doi: 10.1111/aos.13436.
- Lempesis IG, Georgakopoulou VE. Physiopathological mechanisms related to inflammation in obesity and type 2 diabetes mellitus. World J Exp Med. 2023;13(3):7-16. doi: 10.5493/wiem.v13.i3.7.
- Pellegrini V, La Grotta R, Carreras F, Giuliani A, Sabbatinelli J, Olivieri F, Berra CC, Ceriello A, Prattichizzo F. Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells. 2024 Oct 8;13(19):1662. doi: 10.3390/cells13191662.
- Bashir H, Majid S, Khan MS, Bhat MH, Hamid R, Ashraf R, Faiz S. Inter-relationship of Pro- and Anti- inflammatory Biomarkers with the development of Type 2 Diabetes Mellitus. Heliyon. 2022 Oct 31;8(11):e11329. doi: 10.1016/j.heliyon.2022. e11329.
- Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, Xiao X, Shan ZL, Zhang Y, Yao P, Liu LG. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2013 Jan;36(1):166-75. doi: 10.2337/dc12-0702.
- Jin Z, Zhang Q, Liu K, Wang S, Yan Y, Zhang B, Zhao L. The association between interleukin family and diabetes mellitus and its complications: An overview of systematic reviews and meta-analyses. Diabetes Res Clin Pract. 2024 Apr;210:111615. doi: 10.1016/j.diabres.2024.111615.
- Chen HL, Wu C, Cao L, Wang R, Zhang TY, He Z. The association between the neutrophil-to-lymphocyte ratio and type 2 diabetes mellitus: a cross-sectional study. BMC Endocr Disord. 2024 Jul 9;24(1):107. doi: 10.1186/s12902-024-01637-x.
- Dumont BL, Neagoe PE, Charles E, Villeneuve L, Tardif JC, Räkel A, et al. Low-Density Neutrophils Contribute to Subclinical Inflammation in Patients with Type 2 Diabetes. Int J Mol Sci. 2024 Jan 30;25(3):1674. doi: 10.3390/ijms25031674.
- Fuerst N, Langelier N, Massaro-Giordano M, Pistilli M, Stasi K, Burns C, et al. Tear osmolarity and dry eye symptoms in diabetics. Clin Ophthalmol. 2014 Mar 10;8:507-15. doi: 10.2147/ OPTH.S51514.
- Ghenciu LA, Haţegan OA, Bolintineanu SL, Dănilă AI, Faur AC, Prodan-Bărbulescu C, et al. Immune-Mediated Ocular Surface Disease in Diabetes Mellitus-Clinical Perspectives and Treatment: A Narrative Review. Biomedicines. 2024 Jun 12;12(6):1303. doi: 10.3390/biomedicines12061303.
- Rolando M, Barabino S, Giannaccare G, Aragona P. Dealing with the Persistent Pathogenic Issues of Dry Eye Disease: The Importance of External and Internal Stimuli and Tissue Responses. J Clin Med. 2023; 12(6).
- 13. Nelson JD. Impression Cytology. Cornea. 1988;7(1):71-81.
- Akoglu H. User's guide to correlation coefficients. Turk J Emerg Med. 2018 Aug 7;18(3):91-93. doi: 10.1016/j. tjem.2018.08.001.
- 15. Sánchez-González JM, De-Hita-Cantalejo C, Martínez-Lara C, Sánchez-González MC. Lipid, Aqueous and Mucin Tear Film Layer Stability and Permanence within 0.15% Liposome Crosslinked Hyaluronic Acid versus 0.15% Non-Crosslinked Hyaluronic Acid Measured with a Novel Non-Invasive Ocular Surface Analyzer. J Clin Med. 2022 Jun 27;11(13):3719. doi: 10.3390/jcm11133719.
- Baudouin C, Rolando M, Benitez Del Castillo JM, Messmer EM, Figueiredo FC, Irkec M, et al. Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res. 2019;71:68-87. doi: 10.1016/j.preteyeres.2018.11.007.
- 17. Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front En-

- docrinol (Lausanne). 2022 Dec 16;13:1079541. doi: 10.3389/fendo.2022.1079541.
- Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol. 2015 Nov;98(5):713-25. doi: 10.1189/jlb.3RI0615-239R.
- Szlasa W, Wilk K, Knecht-Gurwin K, Gurwin A, Froń A, Sauer N, et al. Prognostic and Therapeutic Role of CD15 and CD15s in Cancer. Cancers (Basel). 2022 Apr 28;14(9):2203. doi: 10.3390/cancers14092203.
- Mun Y, Hwang JS, Shin YJ. Role of Neutrophils on the Ocular Surface. Int J Mol Sci. 2021 Sep 27;22(19):10386. doi: 10.3390/ijms221910386.
- Adeeb S, Arabi TZ, Shah H, Alsalameh S, Abu-Shaar M, El-Sibai AM, et al. Unveiling the Web: Exploring the Multifaceted Role of Neutrophil Extracellular Traps in Ocular Health and Disease. J Clin Med. 2024 Jan 17;13(2):512. doi: 10.3390/jcm13020512.

Acknowledgments: We thank Dr. S. Suchok for assistance with statistical analysis that greatly improved the manuscript

Disclosures

Received: 28.04.2025 Accepted: 25.06.2025

Corresponding author: Tetiana Zhmud – gtatyana@email.ua

Author's contribution. All authors contributed to the study's conception and design. Material preparation, data

collection, and analysis were performed by T. Zhmud and G. Drozhzhyna. The first draft of the manuscript was written by T. Zhmud and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding. The authors did not receive support from any organization for the submitted work.

Conflicts of interest. The authors declare that they have no conflicts of interest that could influence their opinions on the subject matter or materials described and discussed in this manuscript.

Disclaimer. The views expressed in this article are their own and not the official position of the institution.

Trial registration number and date of registration: № 0123U101535; 2023-2025 (state registration of Research and Development works and dissertations of Ukraine).

Ethics approval. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Bioethics Committee of The Filatov Institute of Eye Diseases and tissue therapy of the National Academy of Medical Sciences of Ukraine, Odessa, Ukraine (approval number 08.11.2024 № 1).

Data Availability Statement. All the data obtained and analysed in this study has been reported in this study.